traits predict genotype performance during warming

Relative performance of eelgrass genotypes shifts during extreme warming event: disentangling the roles of multiple traits

Katherine DuBois1,2*, Jessica M. Abbott4, Susan L. Williams1,2+, John J. Stachowicz1,3

1. Department of Evolution and Ecology, University of California, One Shields Ave, Davis, CA 95616, USA.
2. Bodega Marine Laboratory, Bodega Bay, CA 94923 USA.
3. Center for Population Biology, University of California, One Shields Ave, Davis, CA 95616, USA.
4. Institute for Wildlife Studies, Arcata, CA 95518 USA.

*Email: kdubois@ucdavis.edu
+deceased

ABSTRACT:

Extreme climatic events can lead to rapid yet long-term ecosystem alteration, especially when such events impact foundation species. The response and recovery of these foundation species will depend on the diversity and plasticity of traits within that species. However, it is often unknown which traits determine foundation species’ performance under average compared to extreme climatic conditions. Eelgrass (Zostera marina) is a marine foundation species distributed along coastlines throughout the northern hemisphere, on which a unique community of fishes and invertebrates depends. We assessed the performance (i.e. productivity) of 36 genotypes of Z. marina across winter and summer seasons, during one average year (2013) and one year in which summertime
Traits predict genotype performance during warming

temperatures were 2.5° C above average (2014). We used Structural Equation Modeling to relate trait data to variation in performance of genotypes across environmental conditions. Genotypes with highest productivity during winter were predicted by traits related to light capture (leaf length and photosynthetic efficiency). During the extremely warm summer, genotypes with lowest winter shoot densities, longest summer leaves, and the lowest sensitivity to high light (least photoinhibited) achieved highest productivity. Because traits related to high winter performance differed from traits related to high summer performance, genotype performance rank order shifted through time. By directly linking functional trait differences to performance our results demonstrate how genotypic composition could be shifted by an extreme climatic event and how genetic diversity may contribute to population resilience in the face of a changing climate.

Keywords: Extreme Climatic Events, Ocean Warming, Functional Traits, Genotype Performance, Zostera marina

INTRODUCTION:

Anthropogenic climate change is escalating extreme climatic events such as persistent droughts, high intensity storms, and heat waves (Luterbacher et al. 2004, Schar et al. 2004, Coumou & Rahmstorf 2012). The resilience of species facing extreme climatic events depends not only on the severity of change, but also on the diversity of functional traits within a population, the heritability or plasticity in those traits, and the connectivity between populations (Bernhardt & Leslie 2013). Extreme conditions can select against genotypes within a population that are either intolerant of, or unable to acclimate (Chevin
Traits predict genotype performance during warming et al. 2010, Hoffmann & Sgro 2011). However, the occurrence of extreme climatic events also creates increased variability in environmental conditions that could promote or maintain diversity by creating fluctuating selection (Chesson 2000, Shurin et al. 2010), select for highly plastic “generalist” phenotypes (Moran 1992), and potentially counteract directional selection by changing climatic means (Adler et al. 2006).

In ecosystems dominated by a sessile and long-lived foundation species, functional trait diversity and trait plasticity at the genotypic-level will likely play a key role in determining ecosystem-wide response to extreme climatic events. Genotypic diversity in foundation species influences many facets of ecosystem and community processes (Crutsinger et al. 2006, Johnson et al. 2006, Bangert et al. 2008, Hughes & Stachowicz 2009). Some evidence shows that intraspecific trait complementarity underlies this diversity effect (Vavrek et al. 1996, Albert et al. 2011, Hughes and Stachowicz 2011, Abbott et al. 2017), but links to specific traits have yet to be identified in most cases. Therefore, to better understand how foundation species will respond to extreme climatic events it is essential to quantify the diversity in functional traits across genotypes within populations and relate these traits to genotype performance. However, the link between traits and performance is complicated and can be the result of a network of direct and indirect effects, as well as interactions between genetically determined traits, acclimation, and environmental conditions. Thus far, simple approaches have had limited success in identifying how changing climate interacts with trait assemblages to determine performance.

The temperate seagrass *Zostera marina*, is a foundation species that forms vast intertidal and shallow subtidal meadows throughout the northern hemisphere (Moore &
Traits predict genotype performance during warming

Z. marina experiences temporal fluctuations in key environmental parameters such as light, temperature, nutrients, and salinity on both short time scales (i.e. daily and tidal fluctuations) and on longer time scales (i.e. seasonal and interannual variation). Genotypes of Z. marina vary in their physiological and morphological responses to changes in these environmental parameters (Ehlers et al. 2008, Tomas et al. 2011, Salo et al. 2015, Reynolds et al. 2016). Difference in genotype response (genotype-environment interaction) is thought to underlie the diversity effect observed where Z. marina plots with greater numbers of genotypes are more resilient to disturbance from extreme warming events, algal blooms and geese grazing (Hughes & Stachowicz 2004, 2011, Reusch et al. 2005). Similarly, functional trait diversity determines the outcome of interactions among eelgrass genotypes (Abbott & Stachowicz 2016) and promotes ecosystem functioning (Abbott et al. 2017). However, the link between specific traits and trade-offs in genotype performance across different environmental conditions is unclear, limiting our ability to predict population responses based on standing trait diversity.

Here we measured growth and functional traits of 36 genotypes of Z. marina in a common garden setting for two years (2013-2014) during both the winter and summer seasons. We determined if genotype performance rank order, quantified in terms of aboveground productivity (leaf area production per day), was consistent across seasons and years that varied in both temperature and light regimes. In particular, we were interested in how the extreme ocean warming event in the northern Pacific during summer 2014 (known as The Blob) (Bond et al. 2015), could have contributed to unusual patterns in productivity among genotypes. We use Structural Equation Modeling (SEM)
Traits predict genotype performance during warming

as a first attempt to assess which traits might explain variation in plant response to changing environmental conditions, across winter and summer seasons and during an extreme ocean warming event.

METHODS:

Field collection and propagation in common garden

During May 2012 eelgrass (Zostera marina) ramets were collected along 40 m transects from three tidal heights at five sites within Bodega Harbor, Bodega Bay, CA (see Abbott et al. 2018 for details and GPS coordinates of collection locations). We identified 219 unique genotypes using 11 microsatellite markers previously designed for Z. marina (Abbott et al. 2018). From the original 219 genotypes we selected 36 genotypes to propagate in common garden that represented individuals from all tidal heights and sites that included both close genetic relatives and distantly related individuals that were subsequently demonstrated to cover a broad range of trait space across 17 different traits (see Abbott et al. 2018). Leaves and rhizomes of each individual were trimmed (to 30 cm and 3 cm respectively) and then each ramet was planted in homogenized sediment collected from Bodega Harbor in 3.79 L plastic flowerpots. All potted individuals were kept in a single outdoor tank at the Bodega Marine Laboratory, Bodega Bay, CA. The common garden was provided with a constant flow-through supply of seawater, sand filtered to 30 microns. Genotypes were grown for a year to allow new side shoots to develop within the common garden environment. We rotated the pots once a week to reduce any position effects created by light or flow gradients within the tank. We logged seawater temperature every 15 minutes using an Onset HOBO Light and Temperature
Traits predict genotype performance during warming

We used the sea surface irradiance (photosynthetically active radiation, PAR) data from the Bodega Ocean Observing Node (boon.ucdavis.edu/) and extrapolated these continuous measurements using an extinction coefficient obtained by measuring average daily irradiance during August 2013 at a 30 cm depth in the common garden using a Li-COR Spherical Quantum Sensor (unpublished data). We measured water column nitrate levels within the common garden by taking three water samples during each of the 2014 time points (Winter 2014: February 19-21 and 24-25, and Summer 2014: August 25-29). These water samples were analyzed for total nitrates using a LACHAT FIA 8000 series autoanalyzer, (method number 31-107-04-1-E).

Productivity and Morphology Measurements

We measured productivity and morphology on all 36 genotypes by selecting five clonal shoots (sub replicates) per pot for trait determination. We used the “hole punch” method (see Dennison 1987) to non-destructively determine the leaf growth rates of all leaves on each shoot measured. We calculated productivity as the new leaf area (length elongation multiplied by leaf width) divided by the number of days since initial hole-punch (5-14 days). We consider leaf productivity a good proxy for plant-level performance because it is positively correlated with net photosynthesis, metabolic carbon balance, and biomass change (Dennison 1987), and declines in response to a range of stressors such as light limitation (Dennison 1987), high temperatures (Hammer et al. 2018), anoxia and sulfide toxicity (Terrados et al. 1999, Holmer & Bondgaard 2001), and nutrient limitation (Short 1987).
Traits predict genotype performance during warming

We also measured shoot level and clonal level traits for each genotype including shoot length, width, number of leaves per shoot, and shoot density. We considered shoot density a genotype-specific trait because after an initial increase, all genotypes reached a stable density that lasted for at least one year (Fig. S2B and C). Thus, we could not measure asexual reproduction under these common garden conditions because there was no net change in shoot density once this stable density was reached. We were also unable to assess sexual reproduction (i.e. seed production) as flowering shoots were removed to prevent the introduction of new genotypes into the common garden. Productivity and morphology measurements were taken at four time points including: Winter 2013 (December 19-27, 2012), Summer 2013 (September 18-27, 2013), Winter 2014 (February 19-21 and 24-25, 2014), and Summer 2014 (August 25-29, 2014). Additionally, we acquired productivity data from a separate planting of these 36 genotypes in an adjacent mesocosm during July 2014 (Abbott et al. 2018).

Chlorophyll fluorescence measurements

We measured Pulse Amplitude Modulation (PAM) chlorophyll fluorescence using a diving PAM (Walz, Germany) during winter 2014 and summer 2014. We measured fluorescence on the same five shoots for each of the 36 genotypes used to obtain productivity and morphology measurements. The order of genotypes being measured was randomized each day, and measurements were taken between 9:00 AM and 2:00 PM to minimize the effect of diurnal cycles in photosynthesis. We completed measurements on all genotypes over five consecutive days. To take fluorescence measurements, we placed a 4 mm diameter leaf clip on the outer surface of the third leaf, 20 cm from the
Traits predict genotype performance during warming

base of the shoot. We gently cleaned the leaves of epiphytes using tissues prior to
placing the leaf clip for 30 minutes of dark acclimation. Maximal yield of photochemical
energy conversion was determined (Fv/Fm, i.e. the proportion of photons absorbed into
the photosystem) and a rapid light curve (RLC) was performed immediately after to
assess light adaptation (see Ralph & Gademann 2005). For the RLC, actinic light from
the diving PAM was applied in 8 incremental steps from 0 to 1400 µmol photons m\(^{-2}\) s\(^{-1}\),
and the resulting yield measurements were converted to relative electron transport rates
(ETR) using the equation:

\[
ETR = \text{YIELD} \times \text{PAR} \times 0.5 \times \text{AF}
\]

where AF is the absorption factor of the leaf (a reasonable estimate of AF = 0.55 was
used; see Cummings & Zimmerman 2003, Durako 2007), and 0.5 assumes that photons
absorbed are equally distributed between photosystems I and II (Genty et al. 1989).

Data were fit to a double exponential decay function (Ralph & Gademann 2005),

\[
rETR = P_s(1 - e^{-(\alpha Ed/Ps)}) e^{-(\beta Ed/Ps)}
\]

where \(P_s\) is the scaling factor that defines the maximum potential rETR (relative electron
transport rate) and \(E_d\) is the irradiance (PAR) for any given step within a RLC. We
determined the light-harvesting efficiency (\(\alpha\), the initial slope of the curve), and a metric
for photoinhibition (\(\beta\), the declining slope of the curve). From curve coefficients we
calculated maximum relative electron transport rate (rETR\(_{\text{MAX}}\), the asymptote of the
Traits predict genotype performance during warming

Curve—a measure of the photosystem’s capacity to use absorbed light), $E_k$ (minimum saturating irradiance), and $E_m$ (minimum irradiance for onset of photoinhibition) (Ralph & Gademann 2005). Curve fitting and parameter calculations were done in R (version 3.0.2, www.R-project.org)

Data analyses

First, we used our data to describe seasonal and interannual variation in environmental parameters and productivity. Differences among environmental parameters across seasons were evaluated using a one-way ANOVA using daily averages for each day that trait measurements were taken for the following: temperature, maximum irradiance ($I_{\text{max}}$), hours of saturating irradiance ($H_{\text{sat}}$, based on ETR’s calculated above), and water column nitrate. In order to assess how productivity in the common garden varied through time, we compared the average productivity of all genotypes combined across all four time points using repeated-measures ANOVA. We also compared variation in common garden-level average productivity, morphology, and photosynthetic parameters between winter and summer 2014 using a paired T-test. We tested for correlations between the average productivity in the common garden at five different time points (including the fifth time point from Abbott et al. 2018) and three environmental parameters: temperature, $I_{\text{max}}$, and $H_{\text{sat}}$.

Next, we assessed how the productivity of individual genotypes varied over time and in response to environmental changes. For each time point, we averaged the five shoot-level productivity measurements (sub-replicates) to estimate mean productivity for each
Traits predict genotype performance during warming

genotype. We then assessed whether genotype rank order for productivity was consistent
across seasons using Kendall’s Rank Correlation.

Within 2014, we observed strong differences among genotype rank productivity in
summer compared to winter (see Results). We used observed-variable Structural
Equation Modeling (SEM) to investigate how differences in morphological and
photosynthetic traits contributed to this variation. First, we selected five traits out of the
11 measured that we hypothesized to have the greatest influence on productivity and
were least redundant in terms of quantifying genotype physiology (see Table S1 in
supplement for justification). We then averaged the five shoot-level measurements (sub-
replicates) to obtain one trait value for each genotype during each season: winter and
summer 2014. We standardized trait data into z-scores to allow for comparisons of traits
with different units of measurement. We then confirmed that data were multivariate
normal using the Mardia’s Multivariate Normality Test from the R-package “MVN”
(Korkmaz et al. 2014). We started with a meta-SEM that incorporated all five traits at
each time point (see Results), and then through an exploratory model building process
attained more parsimonious models by consecutively removing insignificant paths until
all remaining paths were significant. We then explored additional paths suggested by the
model’s Modification Indices, which identify potential missing correlations based on
global estimation of the model. For the nested candidate models that fit the data, we used
Akaike Information Criterion (AIC) (Mitchell 1992, Preacher 2006, Grace et al. 2010),
and knowledge of Z. marina physiology from the literature to select the most likely
model (Fig 4B, Table 2, Table S1). We confirmed that the residuals of the selected
Traits predict genotype performance during warming

model were multivariate normal. SEM was performed in the R-package “lavaan” (Rosseel 2012). All data analyses were done in R (version 3.0.2, www.R-project.org).

RESULTS:

Seasonal Trends in Common Garden-level Productivity and Environmental Parameters

Average productivity of all 36 genotypes combined during Summer 2014 was almost double that of the prior three seasons, which differed little from each other ($p < 0.001$, $F_{3,102} = 40.58$; post hoc Tukey $p < 0.001$) (Fig 1A). This large spike in Summer 2014 productivity coincided with summer seawater temperatures that were 2.5°C warmer than the other three time points ($p < 0.001$, $F_{3,45} = 185$; post hoc Tukey $p < 0.001$) (Fig 1B) and over 3 standard deviations higher than average summer seawater temperature recorded at the site over the previous 27 years (see supplement, Fig S1). There is a strong positive relationship between average productivity of the 36 genotypes in common garden and seawater temperature ($p = 0.009$, $R^2 = 0.94$), at least for temperatures ranging from 11 °C to 17 °C (Fig 2).

In contrast, although other environmental parameters such as $H_{sat}$ and $I_{max}$ varied across seasons and years (Fig 1C & D), this variation was uncorrelated with the average productivity of the genotypes ($p = 0.119$, $R^2 = 0.781$ and $p = 0.456$, $R^2 = 0.44$ respectively, see supplement Fig S3). $H_{sat}$ varied by season (i.e. three hours longer in the summer than winter) but was not significantly different between the summers ($p < 0.001$, $F_{3,48} = 64.61$; post hoc Tukey, summer comparison: $p = 0.68$) (Fig 1D), even though the two summers differed considerably in productivity. Average maximum irradiance did not differ between winters, but was significantly lower during summer 2014, when
Traits predict genotype performance during warming

Productivity was highest \( (p < 0.001, F_{3,40} = 20.89; \text{post hoc Tukey, winter comparison: } p = 0.937, \text{summer comparison: } p < 0.001) \) (Fig 1C). Average water column nitrate during summer 2014 was significantly lower than during the winter 2014 time point, 9.64 ± 0.44 µM and 12.17 ± 0.22 µM respectively \( (p = 0.002, t = 7.37, df = 3.951) \), contrary to what would be expected if nitrate differences among seasons led to productivity differences.

Most morphological traits averaged across all genotypes (shoot width, leaf count, and shoot density) did not change significantly between time points, although shoots were overall longer in the summer than winter (Table 1). PAM fluorometry measurements revealed physiological changes consistent with acclimation to higher light conditions in the summer including increased maximum electron transport rate within photosystem II \( (r_{\text{ETR}_{\text{max}}}) \) and photosynthetic efficiency \( (\alpha, \text{represented as the rising slope of the rapid light curve}) \). Dark Acclimated Yield (a measure of the photosystems’ ability to harvest electrons that is sensitive to environmental stressors) decreased from winter 2014 to summer 2014 (Table 1). Other PAM measurements did not change between winter and summer 2014 time points (Table 1).

Rank Order of Genotype Productivity Across Seasons

Despite increased productivity when averaged across all genotypes during summer 2014, individual genotypes varied considerably in their response to elevated temperatures such that productivity of individual genotypes under increased temperatures was not predicted by productivity at cooler temperatures. Ranked order of performance (productivity) among genotypes in summer 2014 was uncorrelated with genotype rank during previous season (Fig 3C; \( p = 0.525, \tau = 0.08 \)). In contrast, rank order was very consistent across
Traits predict genotype performance during warming

summers and winters between the other three time points that did not differ much in mean temperature. Genotypes with the highest productivity in summer 2013 also ranked the highest in productivity during winter 2013 and winter 2014 (Fig 3A-B; $p < 0.001$, $\tau = 0.41$; and $p = 0.011$, $\tau = 0.30$ respectively).

Explaining variation among genotypes in response to unusual warming

SEM revealed traits predictive of individual genotype productivity and how trait variation resulted in shifts in rank order of genotype performance between winter and summer 2014. The best fitting model included the following predictor variables: shoot length, shoot density, photosynthetic efficiency ($\alpha$), and summer photoinhibition ($\beta$) (Table 2, Fig 4). The model better explains variation among genotype productivity during the summer (54%) than during the winter (32%). During winter 2014, genotypes with greater photosynthetic efficiency ($\alpha$) and greater shoot length achieved the highest productivity. In contrast, during summer 2014 the genotypes with the lowest winter shoot densities, greater summer shoot length, and least sensitive to summer photoinhibition ($\beta$), achieved the highest productivity.

The SEM did not find a direct relationship between winter productivity and summer productivity, and indirect pathways between these were both positive and negative. For example, genotypes with greater winter productivity had longer summer shoots, which had a direct positive effect on summer productivity and an indirect negative effect on summer productivity mediated by increasing susceptibility to summer photoinhibition. Thus, the SEM results are consistent with our finding that rank order in genotype productivity was uncorrelated across these seasons (Fig 3C).
Traits predict genotype performance during warming

We also found links between traits across seasons that influenced productivity. Winter productivity was increased by greater winter photosynthetic efficiency ($\alpha$) and shoot length during this light limited period. Winter and summer $\alpha$ were positively correlated, indicating a likely genetic component to the trait. However, summer photosynthetic efficiency ($\alpha$) did not directly affect summer productivity, instead summer $\alpha$ indirectly increased productivity by decreasing susceptibility to summer photoinhibition ($\beta$). In turn, summer photoinhibition ($\beta$) decreased summer productivity. Additionally, traits in one season could directly affect production in another: winter shoot density directly and negatively affected summer productivity.

**DISCUSSION:**

Although temperature was strongly positively correlated with mean eelgrass productivity across seasons and years (Fig 2), this did not result from uniform increases in productivity of all genotypes with temperature (Fig 3). There was a clear shuffling of genotype productivity rank that was associated with the anomalously warm summer of 2014 (Fig 1). For several reasons it seems likely that temperature (rather than light) was responsible for the changes in the rank order of genotype productivity that we observed across seasons in 2014. First, there was a positive correlation in the rank order of genotype productivity between winter 2013 and summer 2013 (Fig 3), which had similar mean temperatures, but different light levels (Fig 1). Second, in a separate study, we found that experimentally mimicking the summer 2014 warming event differentially affected shoot production among *Z. marina* genotypes (Reynolds et al. 2016). Thus, our results suggest that extreme events can shift genotypic productivity rank order, and to the extent that productivity differences translate to relative abundances of clonal plants in the field (Pan & Price 2001), influence genotypic composition and ecosystem function.
Traits predict genotype performance during warming

Differences in the morphological and photosynthetic traits appear to underlie the variable response of genotypes through time (Fig 4). Our analysis provides evidence that the same traits can have different effects on productivity across seasons, due to both direct and indirect linkages between traits and production that are revealed by structural equation modeling. Below we detail several pathways that may contribute to the positive correlation in growth among genotypes in some years (winter-summer 2013) and lack of correlation in others (winter-summer 2014).

First, in winter when light conditions are lowest, genotypes with high photosynthetic efficiency (i.e., large $\alpha$) or longer shoots (i.e. more photosynthetic tissue) had greatest productivity (Fig 4B). Winter genotypes with high productivity had longer summer leaves, which led to both a direct increase and an indirect decrease in summer productivity. Genotypes with long summer leaves were most sensitive to high light conditions, expressed as higher photoinhibition (i.e. large $\beta$), which decreased summer productivity (Fig 4B). Summer shoot length could result in increased photoinhibition if longer leaves were older and thus less efficient or more damaged from grazing or epiphytes (Ralph et al. 2005, Alcoverro et al. 1998). The positive relationship between shoot length and photoinhibition could be strengthened by stressful, high temperatures because enzyme processes that reduce photoinhibition are damaged when seagrass experiences temperature stress (Campbell et al. 2006, Lee et al. 2007). This would counteract positive relationships between shoot length and productivity, decoupling genotype rank order between the winter and summer of 2014 (Fig 3C). Consistent with this, in the cooler year of 2013, there was a positive correlation between summer and winter productivity, suggesting that in the absence of temperature stress the direct positive effect of shoot length (Fig. S8) outweighs the indirect negative effect of photoinhibition.

A second pathway within our SEM highlights how genetically determined traits can cause legacy effects that can produce an unfit phenotype in future contexts. Shoot density is a genotype specific trait that remained stable after genotypes reach individual carrying capacity after one year in common garden (Fig S2), and winter shoot density has a negative effect on...
Traits predict genotype performance during warming

summer productivity. It is possible that this negative legacy effect of winter shoot density on productivity during an extremely hot summer is due to genotypic differences in stored carbohydrates which buffer seagrass production under seasonal stress (Zimmerman et al. 1995, Alcoverro et al. 2001, Govers et al. 2015). Overwintering in high-density ramets decreases stored carbohydrates and survival by increasing winter respiratory demand (Vermaat & Verhagen 1996, Alcoverro et al. 2001). If relative differences in carbohydrate stores are persistent, genotypes with high shoot density during the winter could have fewer stored carbohydrates to maintain relative productivity during a period of extremely high temperatures.

Alternatively, winter and summer shoot densities are highly correlated, and it is possible that high summer shoot densities could decrease productivity via self-shading (Dennison 1987, Vermaat & Verhagen 1996, Ralph et al. 2007). However, we found evidence that photoinhibition at the base of the plant negatively affected summer productivity (Fig 4), suggesting that even beneath the canopy light was not limiting. Furthermore, differences in light levels as a function of shoot density were modest: using light extinction coefficients measured in the common garden for the densest genotype ($k = 0.29$) and adjacent clear water ($k = 0.79$) we found that across all genotypes, the number of hours of saturating irradiance to be greater than 10 and differ by only about 10% within vs outside the eelgrass canopy. Consequently, our data do not support summer self-shading as a mechanism linking summer shoot density and productivity in our mesocosms. Regardless of how winter density is mechanistically linked to summer productivity, shoot density was not related to winter productivity but did negatively influence summer productivity, predominantly driving the change of genotype rank during summer 2014.

While the two pathways described above link photophysiological and morphological traits to shifts in genotype relative performance through negative correlations, other pathways simultaneously reveal robust positive correlations through time. For example, photosynthetic efficiency ($\alpha$) ultimately has a positive effect on productivity in both seasons, but the mechanism by which the trait acts in each season differs. During the summer, the positive effect of
Traits predict genotype performance during warming

photosynthetic efficiency ($\alpha$) was achieved by reducing the impact of photoinhibition ($\beta$) on productivity. Under high light conditions, the fraction of excitation energy that can be used in photochemistry becomes less, allowing excess energy to cause greater photodamage in the PSII and greater photoinhibition (Lambers et al. 2008). Consequently, genotypes that are more efficient at light capture could be less likely to accumulate damage to photosystem II, as seen in the negative path connecting summer photosynthetic efficiency to summer photoinhibition. In the winter, under low-light conditions, high photosynthetic efficiency ($\alpha$) directly increases productivity by allowing for better light harvesting. Thus, genotypes characterized by higher photosynthetic efficiency are predicted to perform better in both seasons, but for different reasons. However, under the warmer summer conditions of 2014, simultaneous positive and negative correlations between traits and performance result in the lack of correlated genotype performance through time, and demonstrate how a suite of functional traits is required to tease apart the complex mechanisms underlying changing genotype performance across seasons and years.

As foundation species are critical to ecosystem functioning, understanding the links between traits within and performance of foundation species can have broad, ecosystem-level implications. Additionally, the importance of facilitative interactions from foundation species should become increasingly important as environmental stress increases (Bruno et al. 2003, Anthelme et al. 2014), and will be essential for maintenance of associated species diversity when these species are limited in ability to adapt or acclimate (Michalet et al. 2006, Bulleri et al. 2015). Idiosyncratic differences in community response to extreme warming events have been linked to differences among species in their functional traits (reviewed in Brotherton & Joyce 2015). In eelgrass, intraspecific trait diversity enhances biomass accumulation and invertebrate grazer abundance (Abbott et al. 2017), influences the outcome of intraspecific interactions
Traits predict genotype performance during warming (Abbott and Stachowicz 2016) and likely underlies the observed relationship between genotypic diversity and ecosystem functioning (Hughes and Stachowicz 2004, 2011, Ruesch et al. 2005, Duffy et al. 2015). Beyond eelgrass, decreased variability in photophysiological traits and genetic diversity of kelps was associated with population decline after an extreme warming event (Wernberg 2018), suggesting that links between trait diversity and the maintenance of foundation species’ biomass and functioning may be widespread. Our results demonstrate that variability in response to changing environmental conditions (such as seasonal fluctuations or extreme climatic events) can only be understood as the result of multiple physiological and morphological processes (Kraft et al. 2015), and that the net effect of these processes is context dependent. Clarifying the suites of traits that drive individuals’ responses to a changing environment, as well as describing the distribution of functional trait variation within and among populations, should improve predictions of which populations are most vulnerable to extreme events.

ACKNOWLEDGEMENTS:
This study was supported by a grant from the National Science Foundation OCE-12-34345 to J.J.S., S.L.W., and Rick Grosberg. We thank Jarrett Byrnes for invaluable help with Structural Equation Modeling. Thanks to Nicole Kollars, Melissa Kardish, Laura Reynolds, Elena Huynh, Kendra Chan, Eliza Oldach, and Josh Gervertz for help with collecting trait data.

WORKS CITED:
Traits predict genotype performance during warming


Traits predict genotype performance during warming

Bangert RK, Lonsdorf E V, Wimp GM, Shuster SM, Fischer D, Schweitzer JA, Allan GJ,

Bernhardt JR, Leslie HM (2013) Resilience to Climate Change in Coastal Marine


Bulleri F, Bruno JF, Silliman BR, Stachowicz JJ (2016) Facilitation and the niche:

implications for coexistence, range shifts, and ecosystem functioning. Funct Ecol

30:70-78

Brotheron SJ, Joyce CB (2015) Extreme climate events and wet grasslands: plant traits

for ecological resilience. Hydrobio 750:229-243

Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological


468


31:343–66


changing environment: Towards a predictive theory. PLoS Biol 8: e1000357

Traits predict genotype performance during warming


Traits predict genotype performance during warming


Traits predict genotype performance during warming


23
Traits predict genotype performance during warming


Terrados J, Duarte CM, Kamp-Nielsen L, Agawin NSR, Gacia E, Lacap D, Fortes MD,
Traits predict genotype performance during warming


### TABLES:

**Table 1.** Paired *t*-test comparison of trait values during winter and summer 2014 averaged across all 36 genotypes. Mean ± SD.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Winter (n=36)</th>
<th>Summer (n=36)</th>
<th><em>p</em>-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity (cm² day⁻¹)</td>
<td>1.51 ± 0.46</td>
<td>3.17 ± 1.04</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>
Traits predict genotype performance during warming

<table>
<thead>
<tr>
<th>Shoot Length (cm)</th>
<th>60.59 ± 13.63</th>
<th>96.96 ± 11.92</th>
<th>&lt;0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot Width (cm)</td>
<td>6.29 ± 0.77</td>
<td>6.49 ± 0.78</td>
<td>0.28</td>
</tr>
<tr>
<td>Leaf Count</td>
<td>3.28 ± 0.39</td>
<td>3.12 ± 0.33</td>
<td>0.07</td>
</tr>
<tr>
<td>Shoot Density (shoots m(^{-2}))</td>
<td>518 ± 336</td>
<td>561 ± 337</td>
<td>0.33</td>
</tr>
<tr>
<td>Dark Acclimated Yield (%)</td>
<td>0.75 ± 0.21</td>
<td>0.72 ± 0.04</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Photosynthetic Efficiency (α)</td>
<td>0.21 ± 0.04</td>
<td>0.23 ± 0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Photoinhibition (β)</td>
<td>0.009 ± 0.004</td>
<td>0.009 ± 0.005</td>
<td>0.99</td>
</tr>
<tr>
<td>Maximum Electron Transport Rate</td>
<td>4.12 ± 0.45</td>
<td>4.68 ± 0.60</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>(rETR(_{\text{max}}, \mu\text{mol electrons m}^{-2}\text{s}^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturating Irradiance</td>
<td>57.73 ± 9.43</td>
<td>58.47 ± 11.07</td>
<td>0.76</td>
</tr>
<tr>
<td>(E(_{\text{s}}, \mu\text{mol photons m}^{-2}\text{s}^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downwelling Irradiance</td>
<td>356.15 ± 140.01</td>
<td>317.22 ± 121.79</td>
<td>0.21</td>
</tr>
<tr>
<td>(E(_{\text{m}}, \mu\text{mol photons m}^{-2}\text{s}^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 2.** Candidate path models (see Fig 4A for meta-model). Model 7 was selected as the final model and drawn in Fig 4B. Models 4-7 are all similar and all fit the data.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>MF Test Stat.</th>
<th>DF</th>
<th>Fit (P)</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Full Meta-Model: includes all traits (Fig 4A)</td>
<td>60.4</td>
<td>35</td>
<td>0.005</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Removed cross season correlations between shoot length, photoinhibition, and maximum electron transport rate</td>
<td>62.5</td>
<td>38</td>
<td>0.007</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Removed maximum electron transport rate completely, and link between winter productivity to summer photosynthetic efficiency</td>
<td>41.9</td>
<td>26</td>
<td>0.025</td>
<td>NA</td>
</tr>
</tbody>
</table>
Traits predict genotype performance during warming

4 Added links: winter shoot density to summer productivity, summer shoot length to summer shoot density, and summer shoot length to summer photoinhibition

5 Removed non-significant link between summer shoot length and summer shoot density

6 Removed non-significant link between summer shoot density and summer productivity

7 Added significant link between summer photosynthetic efficiency and summer photoinhibition

Model fit was determined using a chi-squared test of model fit (Fit (\(P\))), \(P\)-values greater than 0.05 denote good model fit. Models that fit the data were compared using Akaike Information Criterion (AIC).

FIGURE CAPTIONS:

**Figure 1.** Average productivity for all 36 genotypes was significantly higher in the summer of 2014 (A), as was average seawater temperature (B). Photoperiod varied by season but was not significantly different between summers (C). Average maximum irradiance varied across time points but not predictably by season (D) Letters indicate statistically similar groups. N=36.

**Figure 2.** Temperature is significantly correlated with the average productivity of the 36 genotypes (\(p = 0.009, R^2 = 0.94\)). Circles denotes measurements taken on common garden plants, triangles are data taken on all 36 genotypes in separate experiment (Abbott et al. 2018) during July of 2014. Error bars show standard deviation around the mean.

**Figure 3.** Kendall’s Rank Correlations for 36 genotypes ranked by average productivity
Traits predict genotype performance during warming between four consecutive time points, Winter 2013-Summer 2013 (A. \( p < 0.001, \tau = 0.41 \)), Summer 2013-Winter 2014 (B. \( p = 0.011, \tau = 0.30 \)), and Winter 2014-Summer 2014 (C. \( p = 0.525, \tau = 0.07 \)). Shaded regions denote 95% confidence interval. Data shown in C. are the same productivity data used in SEM (See Fig 4). \( N = 36 \)

**Figure 4.** Path diagrams of the theoretical meta-model (A.) and the selected model (B.). The selected model (B.) demonstrates that traits related to productivity differ between time points and that changes in relative productivity among genotypes during summer 2014 were primarily driven by a legacy effect of winter shoot density. Gray shaded variables are winter 2014 measurements, unshaded variables are summer 2014 measurements. In the selected model (B.) all black paths are significant. Coefficients of determination are shown in bold by the endogenous variables: winter productivity, summer productivity, summer shoot density, summer shoot length, summer photosynthetic efficiency, and summer photoinhibition. Path regression coefficients are standardized. Arrow sizes are proportional to the strength of the relationship. \( N = 72 \)

**FIGURES:**

**Figure 1.**
Traits predict genotype performance during warming

Figure 2.
Traits predict genotype performance during warming

Figure 3.

Figure 4.
Traits predict genotype performance during warming

SUPPLEMENT:
Traits predict genotype performance during warming

**SUPPLEMENTAL TABLE:**

**Table S1.** Physiological justifications for the relationships included in the Meta-SEM and additional paths added to the selected model (Fig 4).

<table>
<thead>
<tr>
<th>Path</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Meta-Model</strong></td>
<td></td>
</tr>
<tr>
<td>Photosynthetic efficiency ((\phi)) to productivity</td>
<td>In seagrass electron transport as measured with PAM fluorometry is positively correlated with photosynthesis as measured by oxygen evolution (Beer et al. 1998), thus it seems plausible that photosynthetic efficiency could be a limiting step in photosynthesis and plant growth.</td>
</tr>
<tr>
<td>Photoinhibition ((\beta)) to productivity</td>
<td>In seagrass electron transport as measured with PAM fluorometry is positively correlated with photosynthesis as measured by oxygen evolution (Beer et al. 1998), thus it seems plausible that photoinhibition could be a limiting step in photosynthesis and plant growth.</td>
</tr>
<tr>
<td>Relative maximum electron transport rate (rETRmax) to productivity</td>
<td>In seagrass electron transport as measured with PAM fluorometry is positively correlated with photosynthesis as measured by oxygen evolution (Beer et al. 1998), thus it seems plausible that relative maximum electron transport rate could be a limiting step in photosynthesis and plant growth.</td>
</tr>
<tr>
<td>Shoot length to productivity</td>
<td>Increasing leaf area (i.e. leaf length) can lead to higher efficiency in carbon fixation per unit dry mass and is usually associated with faster relative growth rates (Lambers &amp; Poorter 1992). Longer <em>Z. marina</em> sheath lengths are correlated to faster absolute growth rates (Ruesink et al. 2018).</td>
</tr>
<tr>
<td>Shoot Density to productivity</td>
<td><em>Z. marina</em> shoot density in the field is thought to lower productivity through self-shading (Olesen B &amp; Sand-Jensen K 1994), and might also increase respiratory burden of large clones during times of stress (Vermaat &amp; Verhagen 1996).</td>
</tr>
<tr>
<td>Traits across both</td>
<td><em>Z. marina</em> traits are distinct among</td>
</tr>
</tbody>
</table>
Traits predict genotype performance during warming

<table>
<thead>
<tr>
<th>Time points</th>
<th>Genotypes (Tomas et al. 2011), if these trait differences are genetically based it is possible that relative trait values across genotypes would be maintain through time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity across both time points</td>
<td>Based on Kendall Rank Correlation analysis (Fig 3) we were not expecting genotype productivity to be correlated through time. Relative performance (i.e. productivity) among genotypes could be uncorrelated across environments that allowed trait differences to be expressed (Gillespie &amp; Turelli 1989)</td>
</tr>
<tr>
<td><strong>Additional paths added to selected model (Model 7)</strong></td>
<td><strong>Summer photosynthetic efficiency (a) to summer photoinhibition (β)</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Summer shoot length to summer photoinhibition (β)</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Winter productivity to summer shoot length</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Winter shoot density to summer productivity</strong></td>
</tr>
</tbody>
</table>
Traits predict genotype performance during warming

SUPPLEMENTAL FIGURES:

FIGURE CAPTIONS:

Figure S1. Average summer temperature during 2014 (vertical dashed line) was 3.35 standard deviations higher than the long-term summer average at the Bodega Marine Laboratory, Bodega Bay, CA. Data shown are summer averages (July-September) since 1988, calculated from the Bodega Ocean Observing Node (BOON) dataset (www.boon.ucdavis.edu).

Figure S2. Shoot counts (i.e. number of shoots within a pot, effectively shoot density) stabilize after the first year in common garden. Six months after the common garden was planted counts range from 1-15, then 1 year after planting counts range from 1-30 (A & B). Shoot counts reach a range of 5-60 during Winter 2014 (B). Shoot counts remain stable for all of 2014 (C).

Figure S3. There is potentially an effect of hours of saturating irradiance (H_sat) on average productivity of the 36 genotypes ($p = 0.12, R^2 = 0.61$), driven by seasonal differences in daylight hours (A). There is no relationship between maximum irradiance ($I_{max}$) and productivity (B). Circles are data take from genotypes in common garden. Triangle are data taken on 36 genotypes in separate experiment (Abbott et al. 2018) during July 2014.

Figure S4. Raw productivity (A), shoot count (B), and length (C) trait data for all 36 genotypes comparing winter 2013 with winter 2014. Trait variation among the 36
Traits predict genotype performance during warming

genotypes is maintained or increases through time. Dashed line is the 1:1 correspondence line.

**Figure S5.** Raw productivity estimates for all 36 genotypes comparing adjacent time points (A) Winter 2013-Summer 2013, (B) Summer 2013-Winter 2014, (C) Winter 2014-Summer 2013. Dashed line is the 1:1 correspondence line.

**Figure S6.** Raw productivity estimates for all 36 genotypes comparing the same seasons across years including a (A) winter comparison, and a (B) summer comparison. Dashed line is the 1:1 correspondence line.

**Figure S7.** There is no correlation in productivity between the same seasons across years for (A) winter, and (B) summer. If temperature shifts genotype rank during summer 2014, we would not expect there to be a correlation across summers when temperature varied. The lack of correlation across the two winters (which had similar temperature and light conditions) could be because genotypes had only been in common garden for four month by winter 2013 and were acclimating to garden conditions at different rates.

**Figure S8.** Measured variable SEM for all 36 genotypes during 2013. As demonstrated in the 2014 SEM, there is a robust positive feedback between shoot length and productivity. Contrary to the 2014 SEM, winter shoot count (i.e. shoot density) does not
Traits predict genotype performance during warming

have a delayed negative effect on summer productivity, rather summer shoot count has
an indirect positive effect on summer productivity. Because all relationships are
positive, the positive correlation between winter productivity and summer productivity
in 2013 would be expected. Gray shaded variables are winter 2014 measurements,
unshaded variables are summer 2014 measurements. In the selected model (B.) all
black paths are significant. Coefficients of determination are shown in bold by the
endogenous variables: winter productivity, summer productivity, summer shoot count,
summer shoot length. Path regression coefficients are standardized. Arrow sizes are
proportional to the strength of the relationship. Model was run with global estimation
using the R Package “Lavaan”. MF = 6.551, DF = 8, Fit(P) = 0.586, N = 70.

Figure S9. Kendall’s Rank Correlations for 36 genotypes ranked by average productivity
between four consecutive time points, Winter 2013-Summer 2013 (A. \( p < 0.001 \), \( \tau = 
0.41 \)), Summer 2013-Winter 2014 (B. \( p = 0.011 \), \( \tau = 0.30 \)), and Winter 2014-Summer
2014 (C. \( p = 0.525 \), \( \tau = 0.07 \)). Shaded regions denote 95% confidence interval. Labels are
genotype ID numbers. Data shown in C. are the same productivity data used in SEM (See
Fig 4). N = 36

Figure S1.
Traits predict genotype performance during warming

Figure S2.

Figure S3.

Figure S4
Traits predict genotype performance during warming

Figure S5

Figure S6

Figure S7
Traits predict genotype performance during warming

Figure S8

Figure S9

SUPPLEMENTAL REFERENCES
Traits predict genotype performance during warming


