Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows

Maria Emilia Röhr1,2,*, Marianne Holmer2, Julia K. Baum3, Mats Björk4, Diana Chin5, Lia Chalifour3, Stephanie Cimon6, Mathieu Cusson6, Martin Dahl4, Diana Deyanova4,7, J. Emmett Duffy8,*, Johan S. Eklöf4, Julie K. Geyer9, John N. Griffin10, Martin Gulström6, Clara M. Hereu11, Masakazu Hori12, Kevin A. Hovel13,*, A. Randall Hughes14, Pablo Jorgensen15, Stephanie Kiriakopulos16,26, Per-Olav Moksnes17, Masahiro Nakaoka18, Mary I. O’Connor19, Bradley Peterson5, Katrin Reiss20, Pamela L. Reynolds21,*, Francesca Rossi22, Jennifer Ruesink23, Rui Santos24, John J. Stachowicz21, Fiona Tomas25,26, Kun-Seop Lee27, Richard K.F. Unsworth10, Christoffer Boström1

1Åbo Akademi University, Faculty of Science and Engineering, Environmental and Marine Biology, Artillerigatan 6, 20520 Åbo, Finland
2University of Southern Denmark, Department of Biology, Campusvej 55, 5230 Odense M, Denmark
3Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia, V8W 2Y2, Canada.
4Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
5School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY 11968, USA
6Département des sciences fondamentales & Québec-Océan, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi, Québec, G7H 2B1, Canada
7Institute for Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Sofia, Bulgaria
8Tennenbaum Marine Observatories Network, Smithsonian Institution, 647 Contees Wharf Road, Edgewater, MD 21037, USA
9Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, 28557, USA
10College of Science, Singleton Park, Swansea University, Swansea, SA28PP, UK
11Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
12National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, Hastsukai, Hiroshima 739-0452, Japan
13Department of Biology and Coastal & Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
14Department of Marine and Environmental Science, Northeastern University, 430 Nahant Rd, Nahant, MA 01908 USA
15Geomare, Ensenada, Baja California, Mexico
16Estuary and Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA, United States
17Department of Marine Sciences, University of Gothenburg, SE-405 30 Göteborg, Sweden
18Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, 1 Akappu, Akkeshi, Hokkaido 088-1113, Japan
19Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada V6T 1Z4
20Nord University, Faculty for Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
21University of California Davis, Data Science Initiative, One Shields Avenue, Davis, CA 95616.
22CNRS, Centre for marine Biodiversity, Exploitation and Conservation (MARBEC), University of Montpellier, Pl E Bataillon, 34095 Montpellier
23Department of Biology, University of Washington, Seattle, WA, USA

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2018GB005941

© 2018 American Geophysical Union. All rights reserved.
ALGAE - Marine Ecology Research Group, CCMar - Center of Marine Sciences, University of Algarve, Faro, Portugal

IMEDEA, UIB-CSIC, Esporles, Islas Baleares, Spain

Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA

Department of Biological Sciences, Pusan National University, Pusan, Korea

* Corresponding author; Emilia Röhr (mrohr@abo.fi)

Keywords: blue carbon, seagrass, Z. marina

Key points:

- The Z. marina Corg stocks varied widely within and across studied regions, majority of this variation was explained by five sediment and environmental variables.
- The Z. marina Corg stocks were comparable to other seagrass species, and other blue carbon habitats such as salt marshes and mangrove forests.
- Carbon isotopic signatures indicated that at most sites, only < half of the sediment carbon is derived from seagrass, though variation was significant.
Abstract

Despite the importance of coastal ecosystems for the global carbon budgets, knowledge of their carbon storage capacity and the factors driving variability in storage capacity, is still limited. Here we provide an estimate on the magnitude and variability of carbon stocks within a widely distributed marine foundation species throughout its distribution area in temperate Northern hemisphere. We sampled 54 eelgrass (Zostera marina) meadows, spread across eight ocean margins and 36 degrees of latitude, to determine abiotic and biotic factors influencing organic carbon (C$_{org}$) stocks in Z. marina sediments. The C$_{org}$ stocks (integrated over 25 cm depth) showed a large variability and ranged from 318 to 26523 g C m$^{-2}$ with an average of 2721 g C m$^{-2}$. The projected Corg stocks obtained by extrapolating over the top 1 m of sediment ranged between 23.1 - 351.7 Mg C ha$^{-1}$ which is in line with estimates for other seagrasses and other blue carbon ecosystems. Most of the variation in C$_{org}$ stocks was explained by five environmental variables (sediment mud content, dry density and degree of sorting, and salinity and water depth), while plant attributes such as biomass and shoot density were less important to C$_{org}$ stocks. Carbon isotopic signatures indicated that at most sites <50% of the sediment carbon is derived from seagrass, which is lower than reported previously for seagrass meadows. The high spatial carbon storage variability urges caution in extrapolating carbon storage capacity between geographical areas as well as within and between seagrass species.
1. Introduction

The oceans contain the largest carbon pool on Earth and have absorbed about one third of anthropogenic CO$_2$ emissions through physical, chemical, and biological processes (Sabine et al., 2004; IPCC, 2014). Coastal vegetated ecosystems play a fundamental role in carbon storage, and the term “blue carbon” has been created to describe the carbon stored by marine ecosystems, seagrasses, salt marshes and mangroves, in particular (Herr et al., 2012). Altogether, these ecosystems cover only 0.2% of the ocean floor, but hold a sediment carbon storage equal to over half of the global green carbon storage (carbon stored in terrestrial ecosystems and their soils) and up to 33% of the total oceanic CO$_2$ uptake (Hemminga & Duarte 2000; Duarte et al. 2005, 2017; Nelleman et al., 2009; McLeod et al, 2011). Furthermore, some marine ecosystems can store carbon up to millennial time scales, while the carbon stored by terrestrial systems is usually sequestered up to decades (Mateo et al., 1997; Mazarassa et al., 2017a; Samper-Villareal, 2018). However, the longevity of carbon storage varies considerably among species and habitats within both marine and terrestrial systems, most likely due to species-specific traits such as length of the growing season, chemical composition of the plant tissues and plant growth rate, as well as environmental characteristics like temperature, disturbance and sediment oxygenation (Mateo et al., 2006; Russel et al., 2013; Mazarrasa et al., 2018).

Within marine and estuarine ecosystems, seagrass sediment carbon storage is believed to average at 83000 Mg km$^{-2}$, thus equivalent to a total global blue carbon storage of 19.9 billion Mg (Fourquean et al., 2012; Macreadie et al., 2013). Despite the limited areal extent of seagrass meadows, their contribution to carbon accumulation per unit area is up to three orders of magnitude higher than that of terrestrial soils, primarily due to the high capacity of seagrasses to trap particles by reducing water flow, wave energy and sediment resuspension (Fonseca and Cahalan, 1992; Gacia & Duarte 2001, Gacia et al., 2002; Agawin and Duarte, 2002; Koch et al., 2006; Bos et al., 2007; Hendriks et al., 2008). High carbon accumulation rates are also promoted by slow decomposition of organic material in the often hypoxic seagrass sediments, high proportion of refractory organic compounds and high C:N:P ratios. Together, these characteristics make seagrass material less labile and biodegradable, and thus more easily stored than tissues of most other marine angiosperms and algae (Enriquez et al., 1993; Kristensen & Holmer, 2001; Fourquean & Scharlau, 2003; Vichkovitten & Holmer, 2004; Holmer et al., 2009; Kennedy et al., 2010; Pederssen et al., 2011).

Seagrass habitats are highly productive ecosystems and most act as net sinks of carbon (Duarte & Chiscano, 1999; Duarte et al., 2010). Generally, seagrass species with high rates of production also support high sediment organic carbon stocks (the amount of carbon stored in the sediment down to a predefined depth, hereafter C$_{org}$ stocks) (Hemminga & Duarte, 2000; Duarte et al., 2010; Lavery et al., 2013; Rozaimi et al., 2016). In addition, larger seagrass species tend to have higher production rates, higher carbon burial rates and higher sediment C$_{org}$ stocks due to a taller plant canopy, that enhances particle trapping and growth of larger, more persistent belowground tissues (Duarte & Chiscano, 1999;
Lavery et al., 2013). An extreme example of this is *Posidonia oceanica*, an endemic Mediterranean seagrass species capable of high levels of carbon sequestration in their extensive below-ground rhizome mats, far exceeding the carbon sink capacity of other seagrasses, as well as other blue carbon sources (Duarte et al., 2005; Kennedy & Björk, 2009; Fourquean et al., 2012; Duarte et al., 2013a; Lavery et al., 2013; Serrano et al., 2014, 2015). Furthermore, carbon stored in the mats formed by *P. oceanica* date back up to 12500 years, while C_{org} stocks of other seagrass species, such as *Zostera marina* and *Cymodocea nodosa* have typically formed within shorter time scales of up to several centuries of age (Mateo et al. 1997; Reusch et al., 1999; Alberto et al., 2001; Arnaud-Haond et al., 2012).

In addition to particulate organic carbon (hereafter POC) and seagrass biomass, the seagrass sediment C_{org} can be augmented by other carbon sources including phytoplankton, terrestrial plant detritus, macroalgae, epiphytes, and benthic microalgae (Fry et al., 1977; Fry & Sherr, 1984, Moncreiff & Sullivan, 2001; Holmer et al., 2004; Bouillon & Boschker, 2006; Kennedy et al., 2004, 2010; Röhrl et al., 2016; Ricart et al. 2017). These additional sources vary considerably in input and decomposition rates over time, thus influencing the lability and magnitude of C_{org} stocks in seagrass sediments (Kennedy et al., 2004, 2010). In general, benthic microalgae, epiphytes and phytoplankton are more labile sources of C_{org}, while the decay of macrophyte and terrestrial C_{org} is usually slower (Vichkovitten & Holmer, 2004; Bouillon & Boschker, 2006; Mateo et al., 2006). Recent studies have also emphasized how environmental conditions affect seagrass C_{org} stocks (Miyayima et al., 2015; Serrano et al., 2016; Röhrl et al., 2016; Dahl et al., 2016, Dahl 2017). For example, sediment density and grain size can influence the availability of oxygen in the sediment and therefore, the rate of bacterial decomposition. Moreover, water temperature (Moore & Short, 2006; Bouillon & Connolly, 2009; Clausen et al., 2014), salinity (Watanabe & Kuwae, 2015), water depth (Serrano et al., 2014; Samper-Villarreal et al., 2016), dissolved inorganic carbon concentration (Beer et al., 2014) and light availability (Serrano et al., 2014; Eriander 2017), all affect the balance of net community production and respiration, with high temperature and fraction of inorganic carbon content leading to elevated rates of carbon mineralization, while increased salinity and water depth usually lead to lower production rates, hence, influencing the formation of sediment C_{org} stocks.

Although the contribution of seagrasses to global oceanic carbon storage has been quantitatively acknowledged, most estimates come from just a few sites and seagrass species (Greiner et al., 2013; Macreadie et al., 2013; Serrano et al., 2014, 2015; Miyayima et al., 2015; Röhrl et al., 2016; Dahl et al., 2016; Gullström et al., 2018). Importantly, the anomalously high belowground accumulation of carbon in *P. oceanica* meadows might lead to overestimation of the global seagrass C_{org} stock if values for this species are applied as broad proxies for other seagrass species. Furthermore, interactions between seagrass species identity and bed characteristics (e.g. shoot density, shoot size, belowground structure), with local environmental drivers (e.g., sediment characteristics, allochthonous inputs, temperature) may confound global extrapolation of the total magnitude of seagrass C_{org} stocks in the absence of standardized, broad-scale sampling, that incorporate these co-variates.
The foundation species eelgrass (*Zostera marina* L.) is a relatively fast-growing seagrass species forming dense meadows in both inter- and subtidal areas across the temperate Northern Hemisphere (Moore & Short, 2006). *Z. marina* is among the most widespread seagrass species, covering a large geographic range (Spalding et al., 2003; Moore & Short, 2006; Boström et al., 2014), thus potentially contributing significantly to the global seagrass blue carbon stock. *Z. marina* is well known for its structural and functional role as a key species in many marine ecosystems (e.g. Spalding et al., 2003; Boström et al., 2014), but despite its large distribution area, information on local, regional and global blue carbon stocks in *Z. marina* meadows is limited and generated from a handful of studies focusing on relatively small regional areas (Greiner et al., 2013, 2016; Miyayima et al., 2015; Röhr et al., 2016; Dahl et al., 2016).

Here, we quantified the magnitude of *Z. marina* sediment carbon storage across its full geographic range. To do so, we coordinated a standardized sampling program spanning 36 degrees of latitude and 8 different ocean margins and seas. Specifically, we compared the organic carbon stored in the sediment among eelgrass meadows, identified the main carbon sources contributing to the sediment carbon stock and explored the environmental variables driving the observed patterns. Finally, we compared the global carbon storage capacity of *Z. marina* to that of terrestrial and coastal ecosystems. Specifically, we addressed the following questions:

1. What is the magnitude and variation of *Z. marina* sediment C$_{\text{org}}$ stocks?

2. What are the abiotic and biotic environmental factors explaining the variation in *Z. marina* C$_{\text{org}}$ stocks among regions?

3. What are the main carbon sources in *Z. marina* sediments, and do they vary systematically across and within regions?

4. How do Northern Hemisphere *Z. marina* meadows rank globally in terms of magnitude of C$_{\text{org}}$ stocks and carbon storage capacity compared to other coastal and terrestrial carbon sink ecosystems?
2. Materials and methods

2.1 Study area

Plant and sediment samples were collected from 54 sites located in 13 countries (Bulgaria, Canada, Denmark, Finland, France, Japan, Korea, Mexico, Norway, Portugal, Sweden, United Kingdom, USA) across 8 ocean margins and seas (Eastern and Western Atlantic, Eastern and Western Pacific, Baltic Sea, Black Sea, Mediterranean Sea, and Kattegat-Skagerrak) during summer (June to September) 2015 (Fig. 1). Water depth at the sites ranged from 0.5 to 3 m covering subtidal, shallow subtidal and intertidal zones, where the mean annual water temperature ranged from 7 to 20°C and salinity ranged from 6.5 to 38.8. The light periods at the sampling time ranged from 12 to 24 hours (Table S1). The samples were collected within the Zostera Experimental Network, ZEN (www.zenscience.org), a collaboration between scientists addressing the structure and functioning of eelgrass ecosystems (see e.g. Duffy et al. 2015).

2.2 Field sampling

At each site, meadows in which Z. marina was the dominant seagrass species were chosen for sampling, when monospecific meadows were not abundant. Although Z. marina was the dominant seagrass species, 15 sites had mixed meadows that included other species such as Ruppia spp., Potamogeton spp., Halodule spp., Zostera noltii and Zostera japonica, although only Z. marina was collected for sampling of the plant variables. Zostera marina above- and belowground biomass samples were collected with a corer (length 20 cm, diameter 25 cm) from three randomly chosen plots separated by 15 m within the interior (5-10 m from the meadow edge) of the Z. marina bed. Shoot density was quantified within a 0.25 m² frame. Sediment carbon was sampled using a 50 cm long acrylic corer (diameter 5 cm, n= 3). Three 25 cm sediment samples were randomly collected from a single meadow within the sampling site. The corer was manually forced to the depth of at least 25-cm, capped at both ends underwater and transported to the laboratory for further analysis. Due to limited resources, no samples were collected from adjacent bare (unvegetated) sediments. Finally, samples (approximately 10 g of wet material) of plants and algae (drift algae, other angiosperms and epiphytes) considered to be the most likely alternative carbon sources were collected from each site for stable isotope analysis. The number of potential carbon sources within sites varied between 2 and 6.

2.3 Plant variables

In a local laboratory at each site, above- and belowground parts of Z. marina were separated and rinsed with freshwater, then leaves and rhizomes were cleaned of epiphytes, detritus and fauna using a scalpel. All plant material was dried for 48 h at 60°C. The belowground biomass was separated into living and dead rhizomes and each fraction was dried separately. All samples were analyzed for stable
isotopes of carbon and nitrogen (13C and 15N), organic carbon (OC) and particulate organic nitrogen (PON) content to determine their relative contribution to the sediment C$_{org}$ stock. A pooled sample of two young leaves from 10 randomly selected shoots were used for the analysis of aboveground tissue, while samples of both living and dead rhizomes were used for analysis of belowground tissue. All samples, including additional carbon sources, were analyzed with Thermo Scientific, delta V advantage, isotope ratio mass spectrometer (with Vienna Peedee belemnite as reference material) connected to elemental analyzer. Site-specific values for measured plant variables are given in Table S2. Due to lack of in situ sampling of phytoplankton at the sites, δ^{13}C values from the literature were used in the stable isotope analysis (Goering et al., 1990; Jorgensen et al., 2007; Tagliabue & Bopp, 2008; Kajihara et al., 2010; Pernet et al., 2012; Kang et al., 2015; Miyayima et al., 2015; Tiselius & Fransson, 2015; Conway-Cranos et al., 2015; Röhr et al., 2016). The δ^{13}C values for plankton selected from the literature for each site and used in the analysis are given in Table S3.

2.4 Sediment and environmental variables

In the laboratory, sediment cores were sliced into 5 sections of 5 cm down to 25 cm. All visible plant material and fauna were removed, and the sediment was homogenized. A 20 mL subsample taken from the 0-5 cm section was used for grain size analysis, using a Malvern Mastersizer 3000 particle size analyzer to determine the sediment mud content (%). Sediment mud content was calculated as the size fraction (%) of clay and silt (0-63 µm) present. Degree of sorting, calculated from the different sediment grain size fractions, was used as a proxy for degree of exposure of the site (see Folk & Ward, 1957). A 5 mL subsample was then taken from each sediment section and weighed before and after drying at 105°C for 6 h for determination of basic sediment characteristics (sediment water content, dry bulk density and porosity). These characteristics were then used in calculations of sediment C$_{org}$ stocks. The dried subsamples from each layer were homogenized in a mortar and divided into two subsamples, from which one was used for analysis of sediment organic content (loss on ignition, 4 h in 520°C), and the other for analysis of δ^{13}C, δ^{15}N, PON and organic carbon (OC), as described above for the plant material. Prior to analysis, the 0-5 cm sediment layers were acidified to remove carbonate material that could cause possible bias in estimations of the sediment C$_{org}$ stocks. The average sampling depth was calculated for each site and values for mean annual water temperature and salinity were obtained from the ZEN database for the different study regions (Table S1).

2.5 Sediment C$_{org}$ sources

The sediment surface δ^{13}C values were used in the analysis of contribution of different carbon sources to the sediment surface (0-5 cm) C$_{org}$ pool. The sediment surface section was used for the analysis as this was the section in which other potential carbon sources were most likely to accumulate. To estimate the contribution of the potential carbon sources to the sediment surface C$_{org}$ stock, the R function “mixSIR.unknownGroups” was used (Ward et al., 2011). This method is recommended when
the number of sources exceeds the number of tracers + 1 and the grouping of sources may be necessary to reduce bias in the posterior estimates. The function indicates the optimal number of groups and identifies groups by evaluating the likelihood of different source groupings, while simultaneously estimating the proportional contribution of each source group to the sediment surface C\textsubscript{org} pool. The number of groups and source membership per site was based on the frequency of posterior co-occurrence, in order to identify the most parsimonious model formulation. However, for some sites other groupings with only slightly lower posterior probabilities were selected to prioritize biological or ecological similarities between sources. To characterize the δ^{13}C of *Z. marina* (n=3), the δ^{13}C of *Z. marina* leaves, living and dead rhizomes were averaged within each site prior to the analysis, since they were drawn from the same *Z. marina* shoots, and because all the *Z. marina* sources had statistically similar isotopic signatures. The number of samples of other abundant C\textsubscript{org} sources within the meadow (e.g. epiphytes, phytoplankton, drift algae) varied between 1 and 4. When n=1, we assumed an SD= 0.5 to reflect similar variability of the isotopic signatures as for the replicated sources of C\textsubscript{org} in this study. Assuming isotopic variability for non-replicated sources is biologically realistic but also statistically desirable, since the posterior draws depend on the variance estimates and the extent to which the isotope mixture precludes the contribution of sources included in the model. If the isotope signatures of source have no variances, very few of the random draws representing proportional contributions will be resampled, because most draws will have very low likelihoods (Ward et al., 2011). An advantage of Bayesian mixing models such as mixSIR.unknownGroups is that it explicitly deal with variability among mixture and source isotopic signatures, accounting for error propagation in their estimates of source contributions to a mixture (Phillips et al. 2014). By default mixSIR.unknownGroups incorporate a term for variation in consumer tracer values due to the sampling process (“process error”). We also included a “residual error” term, since sediment sourcing mixtures integrate large quantities of source particles, and it is realistic to assume that each mixture data point deviate from the mean of the population due to causes of mixture variability not accounted by process error. We ran 100000 posterior draws for each model. Results are reported as percentage contribution from each source to the sediment surface carbon pool.

2.6 C\textsubscript{org} stock calculations

Carbon density (mg C cm-3) was calculated by multiplying OC (mg g DW-1) measured at each sediment layer with the corresponding sediment dry density (g cm-3). The C\textsubscript{org} stock was calculated by depth integration of carbon density (0-25 cm) using calculations described in detail in Lavery et al. (2013) and given as C\textsubscript{org} stock (g C m-2). The projected C\textsubscript{org} stock for data from this study was estimated by multiplying the C\textsubscript{org} stock by four to estimate the C\textsubscript{org} stocks to 100 cm depth and given as projected C\textsubscript{org} stock (t C ha-1). It should be noted that the Mediterranean value was derived from a single site. The projected C\textsubscript{org} stock in *Z. marina* sediments at the different ocean margins and seas was estimated by extrapolating to 100 cm depth to compare with previously reported C\textsubscript{org} stocks of other seagrass species, other blue carbon habitats (e.g. saltmarshes and mangroves) and terrestrial ecosystems. The 25 cm depth has been previously shown to allow extrapolation to the top 100 cm
(e.g. Fourquarean et al., 2012; Lavery et al., 2013), although, it is unlikely that the sediment C_{org} stock would stay stable throughout the 100 cm sediment profile and often either decreases or increases with depth. While we recognize that these estimations represent extrapolation from a limited set of regions and require some untested assumptions (namely uncertainty in the stability of the depth profiles of sediment C_{org} stocks), they are required to directly compare the carbon storage capacity of $Z. marina$ with other known blue and green carbon stocks, as most of the values used for comparison in this study were measured from the top 1 m section.

2.7 Predictors of among-site variation in carbon stocks

To explain the among-site variation in carbon stocks, we statistically assessed the relative importance of environmental variables (latitude, water depth, salinity, water temperature), sediment variables (sediment density, sediment mud content, degree of sediment sorting and 15N content of sediment) and characteristics of seagrass meadows (15N content of $Z. marina$ eelgrass leaves, PON content of $Z. marina$ leaves, $Z. marina$ shoot density, aboveground $Z. marina$ biomass, belowground $Z. marina$ biomass, root: shoot-ratio and $Z. marina$ contribution to the sediment surface C_{org} pool). We used partial least squares (PLS) regression in SIMCA 13.0.3 software (UMETRICS, Malmö, Sweden) to model projections to latent structures (Wold et al., 2001) on untransformed data. PLS is a developed generalization of multiple linear regression, where latent structures (i.e. variables with the best predictive power) are constructed based on linear associations between a set of predictor variables (x) and the response variable (y). PLS regression modeling was used since this technique can handle multi-collinearity and large numbers of predictor variables (Carrascal et al., 2009). This regression technique is applicable in analyses of various types of ecological data (e.g. Carrascal et al., 2009, Asplund et al. 2011, Staveley et al. 2017) and has recently been used to address the influence of different types of predictors on carbon stocks (Dahl et al. 2016; Gullström et al. 2018). We also used principal component analysis (PCA) to visualize general relationships between ocean margins or seas and environmental predictors (i.e. the five predictors having a major contribution to the PLS model) and the C_{org} stock (g C m$^{-2}$). Prior to the PCA, data were transformed using Log(x+1). A significance level of 95% (p<0.05) was used in the analysis.

3. Results

3.1 Magnitude of sediment carbon stocks

Carbon density (mg C cm$^{-3}$) in the upper 25 cm of the sediment showed marked differences between the ocean margins and seas with site-specific averages ranging from 1.7± 0.5 mg C cm$^{-3}$, in the Baltic Sea area, to 37.9± 8.5 mg C cm$^{-3}$, in the Mediterranean Sea (Table 1). The average carbon density for all sites was 11.4± 4.3 mg C cm$^{-3}$ (Table 1). The average depth-integrated (0-25 cm) C_{org} stock for all sites was 2721± 989 g C m$^{-2}$, but the range of variation between sites (318± 10 to 26523± 667 g C m$^{-2}$) and regions (578± 43 to 8793± 2248 g C m$^{-2}$) was substantial (Table 1, Fig. 2a, Fig. 3). The average C_{org} stocks in the regions per unit area were lowest in the Baltic and Black Seas and highest in the
Kattegat-Skagerrak and Mediterranean ocean margins, although sites within regions varied considerably (Table 1, Fig. 3). In addition, Kattegat-Skagerrak and Mediterranean Sea had 2 to 8-fold higher average C$_{org}$ stocks (4862± 741 and 8793±2248 g C m$^{-2}$, respectively), than the rest of the studied regions. The average C$_{org}$ stocks for the Atlantic and Pacific Ocean margins were moderate compared to C$_{org}$ stocks at the Kattegat-Skagerrak and Mediterranean regions and varied only modestly within each ocean margin (Table 1, Fig. 3). Furthermore, the average C$_{org}$ stocks were almost equal in Eastern and Western Atlantic (1384±241 and 1349±194 g C m$^{-2}$, respectively), while average C$_{org}$ stocks in Eastern and Western Pacific Ocean margins were slightly higher (1736± 210 and 2343±122 g C m$^{-2}$, respectively). The average projected C$_{org}$ stocks of the Z. marina sediments obtained by extrapolating to 100 cm depth ranged between 23.1 (Baltic Sea) and 351.7 Mg C ha$^{-1}$ (Mediterranean Sea) (Table 1). The average projected C$_{org}$ stock for all the studied regions was 108.9 Mg C ha$^{-1}$ (Table 1).

3.2 Environmental factors driving among-site and regional variation in sediment C$_{org}$ stocks

Overall, we found that the sediment organic content was considerably higher in the Kattegat-Skagerrak and Mediterranean Sea, than in the other study regions (Table 2, Fig. 4a). In contrast, sediment mud content varied widely across and within the ocean margins, and was nearly one order of magnitude lower in the Baltic Sea and in the Black Sea than the other regions (Table 2, Fig. 2b, Fig. 4b). Both sediment organic and mud content were positively related to the sediment C$_{org}$ stocks (g C m$^{-2}$) (p <0.0001, R2 = 0.58, R$^2_{cum}$ = 0.53, respectively), indicating the importance of sediment grain size distribution for the size of sediment C$_{org}$ stocks. Sediment mud content was also negatively related with the % contribution of Z. marina to the sediment surface C$_{org}$ pool (p= 0.0287, R2_2 = 0.09). Degree of sorting at the individual sites indicated that our study areas encompassed both sheltered and exposed sites, with no consistent pattern in exposure across the geographical range (Table 2).

The cross-validated variance (Q2 statistics; estimates of the level of predictability of the model) of the PLS model was 51%, which is clearly higher than the 5% significance level. The cumulative fraction of the 15 environmental predictor variables combined (R2_y cumulative) displayed a high degree of determination and explained 62.5% of the variation in the sediment C$_{org}$ stocks (g C m$^{-2}$) across the study sites. Specifically, five predictors, sediment mud content, sediment density, salinity, degree of sediment sorting and water depth had VIP (variable influence on the projection) values above 1, thereby being the major drivers (contributing more than average on the model performance) of the variation in the sedimentary C$_{org}$ stocks (Fig. 5). Sediment mud content, salinity and degree of sediment sorting were all positively related to sedimentary C$_{org}$ stocks, while sediment density and water depth had negative relationships, respectively (Fig. 5). The remaining predictors had less than average influence on the model performance (Fig. 5).

The PCA indicated a similar pattern across the different ocean margins, supporting the PLS results of 5 key environmental indicators, except for Baltic Sea, which showed clear within-regional site similarity (Fig. 6). The PCA model explained a large part of the variation (eigenvalues of PC1 and PC2 were 78.2% and 10.7%, respectively). PC1 and PC2 were both associated with the total variation of six.
variables, i.e. sediment dry density, mud content (%), water depth, salinity, degree of sorting and C_{org} stock. For PC2, the variation was explained in a ranking order by C_{org} stock, mud content (%), salinity, water depth, sediment dry density and degree of sorting.

3.3 Relative contribution of different sources to sediment organic carbon in Z. *marina* beds

$Zostera marina$ was the main carbon source (contribution ranging between 60-94%) to the sediment surface C_{org} pool at 8 sites, whereas it contributed only 3-47% at the remaining 46 sites (Fig. 2c). The average Z. *marina* contribution to the sediment surface C_{org} pool was highest in the Black Sea (56%) and lowest (15%) in the Western Pacific region. The average Z. *marina* contribution to the sediment surface C_{org} pool at the other regions ranged between 20 and 46% (Fig 4 c). Other macrophyte species ($Ruppia$ spp., $Potamogeton$ spp., $Halodule$ spp., and Z. *japonica*) contributed 12-40% at the 15 sites in which they were abundant. Phytoplankton contribution ranged between 6 and 97% and was the major (57-97%) source at 12 sites (Figure S1.). Contribution of macroalgae (12 sites) ($Laminaria$ spp., $Fucus$ spp., $Chara$ spp. and $Dictyota$ spp.) was 12-49% and 10-59% for drifting algae (26 sites), respectively. Epiphyte carbon contributed 12-20% at the four sites in which it was abundant. Terrestrial sources contributed 14-32% to the C_{org} pool at five sites. The $\delta^{13}C$ of the surface sediment at the sites showed no consistent patterns across the ocean margins (Table 2, Fig. 4d). The average $\delta^{13}C$ of Z. *marina* leaves and rhizomes in the ocean margins showed higher variation than sediment surface samples, being heavily depleted in ^{13}C the Black Sea, while the $\delta^{13}C$ at the other regions were more homogenous (Table 2, Fig. 4e). The average $\delta^{15}N$ of Z. *marina* leaves was quite homogenous for the different ocean margins and seas being highest in Black Sea, Eastern and Western Pacific and lowest at Baltic Sea, Kattegat-Skagerrak, Eastern and Western Atlantic and the Mediterranean Sea (Table 2).

4. Discussion

4.1 Geographic and species-specific comparisons of carbon stocks

Our geographically widespread sampling of 54 sites in 8 ocean margins and seas spanning three continents and 36 degrees of latitude shows that the C_{org} stock at the temperate Z. *marina* beds is notable and appears to be on the same order of magnitude as beds dominated by many other species whose role in carbon dynamics are broadly appreciated (Fig. 7). $Zostera marina$ meadows in the temperate Northern Hemisphere exhibit substantial regional and local variation in carbon storage (e.g. over 8-fold differences between the C_{org} stocks in the Mediterranean Sea and Kattegat-Skagerrak compared to the Baltic Sea). These differences are at large explained by sediment characteristics, salinity and depth. In the brackish waters of the Northern parts of the Baltic Sea, Z. *marina* grows in relatively exposed locations (Boström et al. 2014). The exposed habitats do not promote extensive carbon sequestration due to hydrodynamic effects that export the organic matter produced in the meadows to further adjacent locations. In addition, water depth is likely to have larger indirect effects on carbon storage affecting other variables such as hydrodynamics, sediment resuspension and
erosion, that was not accounted for in this study. In contrast, the meadows in e.g. the Kattegat-Skagerrak region usually grow in sheltered depositional environments with relatively high production rates and accumulation of autochthonous organic and inorganic particles. This variation in Z. marina C_{org} stocks among sites and regions makes it clear that previous global scale extrapolations of carbon storage in seagrass beds based on limited sampling must be regarded as tentative and are likely in need of refining.

4.2 Comparing magnitude of carbon stocks in Z. marina versus other seagrasses

The average total Z. marina C_{org} stock in the upper 25 cm of the sediment ranged from 5.8 to 87.9 Mg C ha$^{-1}$ (average 27.2 Mg C ha$^{-1}$) and was lowest in the Baltic Sea and highest in Kattegat-Skagerrak region and at one site in the Mediterranean. In addition, the highest carbon storage among all sites (265.2± 0.67 Mg C ha$^{-1}$) in this study was found at a single site TH (Thurøbund) in the Kattegat-Skagerrak, indicating a potential “carbon hotspot” in the area. In addition, 9 out of 10 of sites exhibiting the highest C_{org} stocks were found in the Kattegat-Skagerrak region, further supporting the role of this region as potential “carbon hotspot”, largely explained by the high OM content sediments found in the highly productive and sheltered seagrass meadows in the region. Comparing the amount of carbon in living Z. marina tissue with that in the upper 25 cm of the sediment, the above- and belowground Z. marina biomass contributed only 3.1% of the total carbon stock, on average. Thus, the sediment carbon content is much more important that the standing biomass of Z. marina for the carbon stock and pool. This means, that even though the areal extent of Z. marina meadows along Eastern Pacific Ocean margin is twice that in Kattegat-Skagerrak (1500 vs. 757 km2, respectively), the meadows in Kattegat-Skagerrak contains 35% more carbon in total (2.76 and 3.74 billion Mg, respectively). This finding is supported by earlier studies in which seagrass carbon has been shown to be a minor contributor to the seagrass C_{org} pool compared to the sediment C_{org} stock (e.g. Fourqurean et al., 2012; Macreadie et al., 2013).

We projected the greatest average carbon storage in a region by extrapolating to 100 cm depth (351 Mg C ha$^{-1}$), at the Mediterranean region, although this value was derived from a single site (FR), while the mean projected carbon storage across the study sites was 108.9 Mg C ha$^{-1}$ (Fig. 7). The average projected Z. marina C_{org} stock from this study was over two-fold higher than that reported for Australian seagrass sediments (50.5 Mg C ha$^{-1}$; Lavery et al. 2013) (Fig. 7). Moreover, the average projected Z. marina C_{org} stock for all the studied regions was higher than the average for East and Southeast Asian seagrasses (72.4 Mg C ha$^{-1}$; Miyayima et al., 2015) and even higher than the global average estimated (70 Mg C ha$^{-1}$) by Kennedy and Björk (2009). In contrast, the average projected C_{org} stock from this study was ~23% lower than that estimated for tropical seagrass meadows (142.2 Mg C ha$^{-1}$; Alongi et al., 2014). In addition, the global median value widely cited in literature (139.7 Mg C ha$^{-1}$; Fourqurean et al., 2012) was nearly three-fold higher than the median projected C_{org} stock from this study (48.6 Mg C ha$^{-1}$) (Fig. 7). Fourqurean et al. (2012) accounted for regional variation in seagrass C_{org} stocks, but we suggest that global estimates of seagrass carbon storage will also require understanding the species composition of the meadows, in addition to acknowledging the species-specific variation and the environmental factors affecting this variation. Indeed, results from
this study suggest that a combination of specific environmental variables can greatly increase the carbon storage potential of *Z. marina* meadows. This can be applied to conservation and restoration efforts, which focus on sites with the greatest potential contribution to offset carbon. Similar “carbon hotspots” exist for beds dominated by other species, such as *P. oceanica*, where average C_{org} stocks were over 16-fold higher at 2m depth than at the 32 m depth (470 and 7550 Mg C ha$^{-1}$, respectively; Serrano et al., 2014).

4.3 Environmental and biological factors driving the *Z. marina* carbon stocks

Given the considerable variation among sites, and the influence of this variation on global estimates outlined above, better estimations for seagrass C_{org} stocks require an understanding of the causes of this variation. PLS analysis revealed that five environmental variables explained over 62% of the variation in the *Z. marina* sediment carbon stocks across study sites (Fig. 5). Three of these were sediment variables (mud content, sediment density, degree of sediment sorting) and two were environmental variables (water depth and salinity) (Fig. 5) (but see Figure S2 for region-specific PLS). These findings are in line with results from earlier studies (Macreadie et al., 2013; Serrano et al., 2016; Miyayima et al., 2015; Dahl et al., 2016; Röhr et al., 2016), which have indicated that sediment characteristics, specifically the sediment grain size distribution and sediment density, appear to be the most important predictors for the carbon sink capacity of seagrass meadows. Thus, these variables could be used as relatively reliable proxies for estimating *Z. marina* sediment carbon stocks, especially in regions where funding for research is limited (Serrano et al., 2016; Röhr et al., 2016).

The differences in sediment density and mud content are mainly driven by the exposure of the sampled meadow. Consequently, local and regional differences in exposure also influence the dynamics of accumulation of inorganic and organic particles into the meadows (Hendriks et al., 2008). In this study, we used degree of sorting as a proxy for exposure (physical exposure through movement of water masses), which was derived from the results of sediment grain size analysis (Folk & Ward, 1957; Mazzarrasa et al. 2017b). According to PLS analysis, degree of sorting was approximately of the same relative importance as salinity, and was mainly driven by exposed *Z. marina* meadows of the Baltic Sea (Figure S2). Consequently, high exposure leads to the export of carbon to other adjacent locations and ecosystems. The importance of carbon export and connectivity among ecosystems has been partly overlooked in blue carbon studies, but recent evidence suggests that carbon exported away from blue carbon ecosystems may contribute significantly to organic carbon stocks in other locations and ecosystems, thereby potentially biasing estimates of global carbon budgets (Hyndes et al., 2014; Barron et al., 2014; Barron & Duarte, 2015; Duarte & Krause-Jensen, 2017). Earlier studies support this hypothesis; e.g. Duarte & Cebrian (1996) showed that ~25% of the net primary production in seagrass meadows is being exported. Similarly, they estimated that ~30% and 19% of net primary production is being exported from mangroves and salt marsh ecosystems. Moreover, recent studies have highlighted that macroalgae, which have not previously been recognized as contributing to carbon storage, might make significant contributions to blue carbon stocks as a carbon donors to
This exchange of organic matter across ecosystem boundaries has inevitable consequences for the availability of the organic matter and burial, mineralization and consumption of organic carbon by microbial communities and higher trophic levels (Hyndes et al., 2014; Barron et al., 2014; Barron & Duarte, 2015; Duarte & Krause-Jensen, 2017). Carbon export is also highly important for the implementation of blue carbon offset-credits due to the risk of duplicating carbon sequestration estimates, both at source and sink ecosystems (Hejnowicz et al., 2015).

A recent study, encompassing both intertidal and subtidal and tropical and temperate seagrass ecosystems, showed, that presence of seagrass resulted in an average difference in surface elevation rate of 31 mm yr\(^{-1}\), compared to adjacent unvegetated sediments (Potouroglou et al., 2017). Furthermore, although not measured in this study, the structure of seagrass meadows can also be a potentially important predictor for the magnitude and source of seagrass C\(_{\text{org}}\) stocks. Gullström et al. (2018) showed that in tropical East Africa, landscape configuration, along with sediment characteristics and seagrass biomass were the most important predictor variables for seagrass sediment C\(_{\text{org}}\) stocks. Similarly, Ricart et al. (2017) showed that continuous P. oceanica meadows may store up to three times more C\(_{\text{org}}\), per area, than seagrasses growing in small patches, and it is likely that similar trends can be found also in other seagrass species. This variation was explained by elevated rates of remineralization and resuspension, caused by reduced plant canopy in small, patchy meadows. In addition, in patchy meadows, seston and other allochthonous inputs were the major sources of accumulating C\(_{\text{org}}\), while in continuous meadows with higher C\(_{\text{org}}\) stocks, the major C\(_{\text{org}}\) source was of autochthonous origin. Various studies have reported higher C\(_{\text{org}}\) accumulation rates for seagrass sediments than predicted from plant production alone, indicating that allochthonous sources must be important contributors to the seagrass sediment C\(_{\text{org}}\) stocks (Bouillon et al., 2006; Kennedy et al., 2010). Kennedy et al. (2010) compiled data from 123 seagrass meadows, and showed that on average, ~50\% of C\(_{\text{org}}\) in seagrass sediments was of autochthonous origin. In our study, Z. marina derived detritus was the major contributor (60-94\%) to the sediment surface C\(_{\text{org}}\) pool at only 8 out of 54 sites contributing on average 30.5±3.1\% to the sediment surface C\(_{\text{org}}\) pool across the study regions. Although results from the PLS analysis revealed that Z. marina contribution to the sediment surface C\(_{\text{org}}\) pool explained only relatively small fraction of the variation in C\(_{\text{org}}\) stocks, we note that a sizable fraction of the C\(_{\text{org}}\) at many sites was derived from seagrass, although the proportion of this fraction varied considerably among sites (Fig 2c). Furthermore, even though Z. marina contribution was not among the most important predictors, the presence of Z. marina meadows still enhances the production of epiphytes, micro and macroalgae, traps allochthonous organic particles, and reduces sediment resuspension and water flow, thus resulting in high sequestration contributing to the formation of sediment C\(_{\text{org}}\) stocks (see Figure S14 for phytoplankton contribution to the sediment surface C\(_{\text{org}}\) pool). In addition, due to limited resources, we could not date our sediment cores and interpret the results from stable isotope mixing model in context of the information given by dating the core. The analysis of source contribution to the sediment C\(_{\text{org}}\) pool was run only for the surface layer, which gives us a proxy of the potential contribution of different carbon sources in the most recent times, but does not really hold information about the past. The δ\(^{13}\)C value typically gets closer to δ\(^{13}\)C
of seagrass in the deeper layers especially in the high C_{org} stock sites (Fourqurean & Scharlau, 2003), but in the absence of information on the age and stability of the sediment studied and analysis of the full sediment $\delta^{13}C$ profile, we cannot make solid conclusions about the contributions of the different carbon sources to the meadow in long-term.

4.4 Consequences of seagrass loss for global blue carbon stocks

To date, vast areas of blue carbon ecosystems have been lost due to changes in land use and human-induced eutrophication. Mcleod et al. (2011) reported that 0.7-7% of the blue carbon ecosystems are lost annually. In the past 130 years, ca. 29% of the global seagrass area has been lost, and in many regions, these rates are accelerating (Orth et al., 2006; Waycott et al., 2009; Furman et al., 2015; Marba et al., 2015; Bertelli et al., 2018). In contrast, salt marsh loss rates have remained relatively stable and loss rates for mangrove forests have slowed from 1.04% y$^{-1}$ in the 1980s to 0.66% y$^{-1}$ in 2000 (Waycott et al., 2009). The consequences of loss of blue carbon ecosystems to the oceanic carbon flux are still in need to be quantified, as there is likely to be substantial variation between different regions and habitats. Furthermore, the fate and magnitude of inorganic carbon stocks stored in seagrass sediments has largely been overlooked by previous studies, although its contribution to sediment carbon pool in some regions have been shown to exceed that of organic carbon stocks by several factors (Mazarrasa et al., 2015). Using the annual loss rates for seagrass ecosystems, Pendleton et al. (2012) calculated a conservative estimate of 50-330 billion Mg CO$_2$ emissions from seagrass habitats annually, equivalent to approximately 33% of the total blue carbon emissions and economic damages. Furthermore, Macreadie et al. (2013) showed that disturbed $P. \text{australis}$ meadows had up to 72% lower sediment C_{org} stocks compared to the sediments in adjacent undisturbed seagrass meadows. Similarly, Marba et al. (2015) showed that in sites experiencing a permanent seagrass vegetation loss, also 90 years’ worth of carbon accumulation was lost through erosion of the sediments. The extensive loss of sediment C_{org} stock in the disturbed seagrass meadows was most likely being caused by microbial priming, an activation of previously dormant bacteria under the altered environmental conditions causing a release of ancient carbon stored in the sediments (e.g. Trevathan-Tackett et al., 2018).

Our results reveal that the magnitude of $Z. \text{marina}$ C_{org} stocks is comparable not only to other seagrass species, but also to other blue carbon habitats such as salt marshes and mangrove forests. The circumpolar distribution of $Z. \text{marina}$ meadows suggests that the overall value of the total carbon stored in the world’s $Z. \text{marina}$ ecosystems is high. This finding is corroborated by the fact that the global areal extent of $Z. \text{marina}$ could potentially be much more extensive than currently mapped (Gattuso et al., 2006). $Zostera \text{marina}$ meadows of the Northern Hemisphere have suffered from similar losses as seagrass meadows at other regions, e.g. as a consequence of wasting disease caused by pathogenic strain of $Labyrinthula$ (Short et al., 1987). The Danish $Z. \text{marina}$ meadows in our suggested “carbon hotspot”, Kattegat-Skagerrak, were reduced by 80-90 % in the beginning of 1930s (Rasmussen, 1977). $Z. \text{marina}$ had recolonized many coastal areas by the 1970s, but new losses
have occurred in the area since the 1980s, mainly due to eutrophication, and the *Z. marina* distribution in Denmark today is only around 20-25% of the historic distribution (Frederiksen et al., 2004). Similar losses have occurred along the Swedish Skagerrak coast, where over 60% of the *Z. marina* has vanished since the 1980’s (equivalent to 125 km2) and the losses continue today (Baden et al., 2013). Despite improvements in the nutrient status and water quality in these regions, the restoration success of seagrasses has until now remained poor. Moksnes et al. (2018) has suggested that local regime shifts result in increased sediment resuspension and accumulation of drifting algae, and by these negative feedback mechanisms preventing the successful recovery and restoration of the meadows in the region. Similar trend has been observed in other parts of the world where a recent study by van Katwijk et al. (2015) show a success rate of only 37% for seagrass restoration projects globally.

Although the loss rates are accelerating, neither seagrasses nor any of the other blue carbon ecosystems were until recently included in carbon trading programs such as REDD (Reduced emissions from deforestation and degradation) and REDD+ (McLeod et al., 2011; Pendleton et al., 2012). However, some promising initiative to involve Blue Carbon ecosystems in the carbon trading programs have been made, such as the Andalusian Law of Climate Change, and Verified Carbon Standard, which now include an option for Wetlands Restoration and Conservation. In addition, economic incentives such as PES (Payment for Ecosystem services) could serve as financial initiations for protection of coastal carbon (Murray et al., 2011; Locatelli et al., 2014; Hejnowich et al., 2015). However, the cost of these losses in terms of carbon storage cannot be accurately assessed without knowing the C$_{org}$ stock of the same areas in the absence of seagrass. Although seagrass presence can increase the C$_{org}$ in sediments (Ricart et al., 2015; Miyayima et al., 2015; Marba et al., 2015; Dahl et al., 2016; Rozaimi et al., 2016, Samper-Villareal et al. 2018), in some systems vegetated and unvegetated sediments have similar organic matter content (Richardson et al. 2008). The comparison can be difficult to accurately assess, however, because simply sampling bare patches outside of seagrass beds may not provide adequate reference sites due to environmental or sedimentary characteristics that differ from those in the beds, and the proximity of seagrasses may also alter other adjacent ecosystems. While we recognize this deficiency, and note that we cannot calculate exactly how much carbon the presence of seagrasses adds to the system, these data suggest that the proportion is likely to be substantial, although varying considerably among sites and regions.

Unfortunately, current lack of acknowledgement and protection of the value of the ecosystem services seagrass meadows provide, both in terms of carbon sequestration and other services, such as nursery habitat, nutrient accumulation and sediment stabilization (e.g. Cole & Moksnes, 2012; Luisetti et al., 2013; Unsworth & Cullen-Unsworth 2013; Hejnowich et al., 2015; Maxwell et al., 2016; Nordlund et al., 2016), suggest that the global decline of seagrass meadows will most likely continue. The poor restoration success of seagrass meadows globally urges to protect the meadows, which still persist. We emphasize that there is an urgent need to reverse the current trend of losses of blue carbon ecosystems by conserving and involving blue carbon habitats as part of climate change mitigation programs and global carbon budgeting. Both in a global and regional contexts, there are still many
unknowns in blue carbon research that must be defined. The most important gaps include determination of the total areal extent of global blue carbon storage zones, examination of the fate of both inorganic and organic carbon exported from existing and disturbed blue carbon ecosystems, seascape connectivity between blue carbon ecosystems and finally, identification of the possible thresholds limiting ecosystem shifts (Van der Heide et al., 2011; Maxwell et al., 2016). By answering these questions, we could potentially create incentives to contribute to more relevant policy making and legislation, and identify areas in which restoration and conservation could benefit both the management of atmospheric CO$_2$ emissions and the protection of biodiversity and other ecosystem services that these valuable ecosystems sustain.
References:

© 2018 American Geophysical Union. All rights reserved.

© 2018 American Geophysical Union. All rights reserved.

Tiselius, P., & Fransson, K. (2015). Daily changes in δ^{15}N and δ^{13}C stable isotopes in copepods: equilibrium dynamics and variation of trophic level in the field. *Journal of Plankton Research* 0(0), 1-11.

Acknowledgements:

This work is part of coordinated experimental network, Zostera Experimental Network (ZEN, www.zenscience.org) a collaborative network of scientists studying the structure and functioning eelgrass ecosystem, that provided an unique opportunity to explore globally the C$_{org}$ stocks in eelgrass meadows with homogenic sampling methodology and protocol. This work is also part of a double degree programme between Åbo Akademi University (ÅAU) and the University of Southern Denmark (SDU). The study was funded by the Maj and Tor Nessling Foundation (project 201600125: Baltic Sea blue carbon: environmental gradients influencing the carbon sink capacity of seagrass meadows), the University of Southern Denmark, and US National Science Foundation grants OCE-1336206, 1336741 and 1336905. We acknowledge Archipelago Centre Korpoström and the University of Southern Denmark for excellent working facilities. We also acknowledge all the field- and laboratory assistants enabling gathering of this global data set. Data is provided at Zenodo repository under doi: 10.5281/zenodo.1412380.
Table 1. Summary of carbon storage by region. Ocean margin/sea, number of sites included (n), *Z. marina* distribution area (km2), sediment organic carbon density (C_{org} density, mg C cm$^{-3}$), sediment organic carbon content (SedOC, % DW), average organic carbon stocks in the upper 25 cm of the sediment (C_{org} stock; g C m$^{-2}$), OC in living *Z. marina* biomass (g C m$^{-2}$), total organic carbon stocks in the region (Total C_{org}; Mt), average projected organic carbon stocks extrapolated to 100 cm sediment depth (Projected C_{org} stock; Mg C ha$^{-1}$) across the study regions. Mean ± SE (n=1-19) is given. The areal estimates of the *Z. marina* coverage at the different regions were obtained from Short and Green (2003), Luisetti et al. (2013) and Boström et al. (2014).

<table>
<thead>
<tr>
<th>Ocean margin/sea</th>
<th>n</th>
<th>Z. marina area (km2)</th>
<th>C_{org} density (mg C cm$^{-3}$)</th>
<th>SedOC (% DW)</th>
<th>C_{org} stock (g C m$^{-2}$)</th>
<th>OC in biomass (g C m$^{-2}$)</th>
<th>Total C_{org} (Mt)</th>
<th>Projected C_{org} stock (Mg C ha$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baltic Sea</td>
<td>13</td>
<td>90</td>
<td>1.7±0.5</td>
<td>0.3±0.0</td>
<td>578±43</td>
<td>79±8</td>
<td>0.05</td>
<td>23.1</td>
</tr>
<tr>
<td>Black Sea</td>
<td>2</td>
<td>765</td>
<td>2.1±1.1</td>
<td>3.5±1.2</td>
<td>725±159</td>
<td>63±22</td>
<td>0.6</td>
<td>29.0</td>
</tr>
<tr>
<td>Eastern Atlantic</td>
<td>3</td>
<td>-</td>
<td>9.2±5.4</td>
<td>0.7±0.5</td>
<td>1384±241</td>
<td>129±35</td>
<td>-</td>
<td>55.4</td>
</tr>
<tr>
<td>Western Atlantic</td>
<td>5</td>
<td>374</td>
<td>4.5±0.8</td>
<td>0.3±0.0</td>
<td>1349±194</td>
<td>100±15</td>
<td>0.5</td>
<td>54.0</td>
</tr>
<tr>
<td>Eastern Pacific</td>
<td>8</td>
<td>1500</td>
<td>5.6±1.3</td>
<td>0.4±0.1</td>
<td>1736±210</td>
<td>107±14</td>
<td>2.8</td>
<td>69.4</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>3</td>
<td>-</td>
<td>11.2±1.2</td>
<td>1.1±0.1</td>
<td>2343±122</td>
<td>86±9</td>
<td>-</td>
<td>93.7</td>
</tr>
<tr>
<td>Kattegatt-Skagerrak</td>
<td>19</td>
<td>757</td>
<td>19.3±3.9</td>
<td>2.5±0.6</td>
<td>4862±741</td>
<td>80±7</td>
<td>3.7</td>
<td>194.5</td>
</tr>
<tr>
<td>Mediterranean Sea</td>
<td>1</td>
<td>-</td>
<td>37.9±8.5</td>
<td>2.3±0.0</td>
<td>8793±2248</td>
<td>62±8</td>
<td>-</td>
<td>351.7</td>
</tr>
<tr>
<td>Z. marina average</td>
<td>54</td>
<td>-</td>
<td>11.4±4.3</td>
<td>1.4±0.4</td>
<td>2721±989</td>
<td>88±5</td>
<td>-</td>
<td>108.9</td>
</tr>
</tbody>
</table>
Table 2. Summary of potential environmental drivers for carbon storage by region. The ocean margin/sea, number of sites included (n), shoot density (shoots m$^{-2}$), seagrass above- and belowground biomass (AB and BB, g DW m$^{-2}$), root : shoot -ratio (R:S), δ^{13}C of *Z. marina* leaves, δ^{13}C of *Z. marina* rhizomes, δ^{13}C of sediment surface, 15N content of *Z. marina* leaves, sediment organic matter content (SedOM, % DW), sediment mud content (%), sediment dry density (Dry dens., g cm$^{-3}$) and degree of sorting (DS, ϕ) at the ocean margins and seas. ± SE (n = 1-19) is given. EA = Eastern Atlantic, WA = Western Atlantic, EP = Eastern Pacific, WP = Western Pacific, BS = Baltic Sea, K-S = Kattegat-Skagerrak, BLS = Black Sea, MED = Mediterranean Sea.

<table>
<thead>
<tr>
<th>Ocean margin /sea</th>
<th>n</th>
<th>Shoot density (shoots m$^{-2}$)</th>
<th>AB (g DW m$^{-2}$)</th>
<th>BB (g DW m$^{-2}$)</th>
<th>R:S</th>
<th>δ^{13}C Z. marina leaves</th>
<th>δ^{13}C Z. marina rhizomes</th>
<th>δ^{13}C sediment surface</th>
<th>δ^{15}N Z. marina leaves</th>
<th>SedOM (% DW)</th>
<th>Mud content (%)</th>
<th>Dry dens. (g cm$^{-3}$)</th>
<th>DS (ϕ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>13</td>
<td>397±63</td>
<td>118±17</td>
<td>102±19</td>
<td>1.3±0.5</td>
<td>-11.8±0.9</td>
<td>-11.4±0.7</td>
<td>-18.9±0.8</td>
<td>6.7±0.4</td>
<td>1.1±0.1</td>
<td>5.9±0.8</td>
<td>1.3±0.1</td>
<td>1.3±0.1</td>
</tr>
<tr>
<td>BLS</td>
<td>2</td>
<td>736±459</td>
<td>120±56</td>
<td>72±32</td>
<td>0.5±0.1</td>
<td>-17.8±0.7</td>
<td>-15.5±0.7</td>
<td>-16.6±5.6</td>
<td>10.6±1.1</td>
<td>0.7±0.1</td>
<td>3.6±0.6</td>
<td>1.3±0.1</td>
<td>1.6±0.3</td>
</tr>
<tr>
<td>EA</td>
<td>3</td>
<td>774±275</td>
<td>78±10</td>
<td>264±134</td>
<td>1.6±0.4</td>
<td>-10.2±1.5</td>
<td>-9.9±1.2</td>
<td>-19.1±0.5</td>
<td>6.7±0.7</td>
<td>2.3±0.4</td>
<td>24.0±9.2</td>
<td>1.2±0.2</td>
<td>1.3±0.4</td>
</tr>
<tr>
<td>WA</td>
<td>5</td>
<td>381±202</td>
<td>183±46</td>
<td>180±41</td>
<td>1.1±0.1</td>
<td>-9.2±0.8</td>
<td>-10.1±0.4</td>
<td>-18.1±0.6</td>
<td>7.2±0.8</td>
<td>1.2±0.2</td>
<td>21.4±3.2</td>
<td>1.5±0.1</td>
<td>1.7±0.2</td>
</tr>
<tr>
<td>EP</td>
<td>8</td>
<td>549±316</td>
<td>232±61</td>
<td>111±47</td>
<td>0.6±0.2</td>
<td>-10.5±0.4</td>
<td>-10.6±0.4</td>
<td>-20.2±0.9</td>
<td>9.9±1.1</td>
<td>3.8±1.9</td>
<td>21.3±2.8</td>
<td>1.4±0.1</td>
<td>1.4±0.2</td>
</tr>
<tr>
<td>WP</td>
<td>3</td>
<td>287±80</td>
<td>194±53</td>
<td>56±16</td>
<td>0.4±0.2</td>
<td>-9.9±0.7</td>
<td>-10.4±0.6</td>
<td>-18.9±0.7</td>
<td>9.2±1.5</td>
<td>4.1±1.1</td>
<td>72.5±4.4</td>
<td>1.0±0.0</td>
<td>2.1±0.1</td>
</tr>
<tr>
<td>K-S</td>
<td>19</td>
<td>319±35</td>
<td>129±15</td>
<td>125±26</td>
<td>1.2±0.3</td>
<td>-9.4±0.5</td>
<td>-10.4±0.5</td>
<td>-17.6±0.9</td>
<td>6.1±0.7</td>
<td>7.2±1.2</td>
<td>32.9±3.3</td>
<td>0.9±0.1</td>
<td>1.6±0.1</td>
</tr>
<tr>
<td>MED</td>
<td>1</td>
<td>223±55</td>
<td>73±14</td>
<td>144±40</td>
<td>2.4±1.0</td>
<td>-5.1±0.4</td>
<td>-7.4±0.9</td>
<td>17.5±0.8</td>
<td>5.1±0.4</td>
<td>7.0±2.2</td>
<td>76.3±0.7</td>
<td>1.3±0.2</td>
<td>2.1±0.0</td>
</tr>
<tr>
<td>Z. marina average</td>
<td>54</td>
<td>419±57</td>
<td>146±13</td>
<td>127±17</td>
<td>1.8±0.6</td>
<td>-10.5±3.5</td>
<td>-10.8±0.3</td>
<td>-18.3±0.4</td>
<td>7.1±0.4</td>
<td>3.0±0.6</td>
<td>24.9±3.0</td>
<td>1.0±0.1</td>
<td>1.5±0.1</td>
</tr>
</tbody>
</table>
Figure 1. The study sites in the Northern hemisphere (with sampled countries in green). Black dots indicate the sampling sites, except for in Bulgaria, Denmark, Finland and Sweden, in which one dot indicates multiple (n= 2-10) sites. Ocean margins and seas are labeled by numbers: 1 = Eastern Pacific, 2 = Western Atlantic, 3 = Eastern Atlantic, 4 = Kattegat-Skagerrak, 5 = Baltic Sea 6 = Black Sea, 7 = Mediterranean Sea and 8 = Western Pacific. For site names see Table S1.
Figure 2. (a) C_{org} stocks (g C m$^{-2}$ ±SE) in the top 25 cm of sediment at all sites. Note that value at site TH corresponds to right y-axis (b) Sediment mud content (% ±SE) and (c) The relative contribution of $Z. \text{marina}$ tissues to the δ^{13}C of the sediment surface layer (0-5 cm) at the sites. Box plots represents first and third quartiles and are shown with medians (horizontal line), means (+). The whiskers represent the 2.5-97.5 percentiles. $Z. \text{marina}$ contribution was calculated from a pooled δ^{13}C value of above- and below-ground tissue. Sites are ordered according to the magnitude of C_{org} stocks (from lowest to highest). In Figure 2a, the sites are colored according to the study region: black= Black Sea, brown= Baltic Sea, dark blue= Kattegat-Skagerrak, turquoise= Eastern Pacific, light blue= Western Atlantic, red= Eastern Atlantic, yellow= Western Pacific and purple= Mediterranean Sea. For site names, see Table S1.
Figure 3. Seagrass (Z. marina) sediment organic carbon stocks (C_{org} g C m^{-2}) across the ocean margins and seas in the top 25 cm of the sediment. Box plots represent first and third quartiles and are shown with medians (horizontal line), means (+). Whiskers represent the 2.5-97.5 percentiles. Number of sites per ocean margin/sea is given above the whiskers.
Figure 4. The (a) organic content (OM %), (b) mud content (%), (c) *Z. marina* contribution to the upper 5 cm of the sediment surface C_{org} pool (%), (d) $\delta^{13}C$ of sediment surface samples and (e) $\delta^{13}C$ of *Z. marina* leaves across the ocean margins and seas Box plots represents first and third quartiles and are shown with medians (horizontal line), means (+). Whiskers represent the 2.5-97.5 percentiles. Boxes are not shown for sites in which $n \leq 3$.
Figure 5. Partial least square (PLS) regression model coefficient plot showing the relative importance of different predictor variables. Predictor variables are ranked in order of importance (from the left to the right), in which the five variables left of the dashed line have VIP (variable influence on the projection) values above 1 (and hence an above average influence on C_{org} stocks). Brown bars represent sediment characteristics, green bars represent seagrass-associated variables and blue bars are environmental variables.
Figure 6. Principal component analysis (PCA) showing how the eight regions are related to the most influential predictor variables (see Fig. 5) and in terms of C$_{org}$ stock data (i.e. the response variable). The horizontal axis (PC1) accounts for 78.2% of the total variance, while the vertical axis (PC2) accounts for 10.7% of the total variance.
Figure 7. The total C_{org} stock (Mg C ha$^{-1}$) in top 100 cm of soil in terrestrial and blue carbon ecosystems (boreal forest, mangroves, salt marshes, tropical forest and temperate forest), other seagrass species (Posidonia sinuosa, Posidonia australis, Halophila ovalis, Zostera mulleri, Halodule uninervis, Amphibolis antarctica, Cymodocea rotundata/ Halodule uninervis, Posidonia oceanica, Australian seagrass meadows; average, East and Southeast Asia; average, world seagrasses; median) and C_{org} projected for $Z. marina$ at the different ocean margins and seas in the study area (Baltic Sea, Black Sea, Eastern and Western Atlantic, Eastern and Western Pacific, Kattegat-Skagerrak, and Mediterranean Sea). Number of sites per ocean margin/sea is given next to the bars: 1 = this study, 2 = Lavery et al., 2013, 3 = Miyajima et al., 2015, 4 = Fourqurean et al., 2012, 5 = Serrano et al., 2014, 6 = Duarte et al., 2013b (derived from Siikamaki et al., 2012; Pendleton et al., 2012), 7 = Kennedy & Björk, 2009 (derived from Duarte & Chiscano 1999; Duarte & Cebrian, 1996; Janzen 2004; Duarte et al., 2005).